

committente	
FONDAZIONE COLLEGIO DELLE UNIVERSITA' MILANESI	
20142 Milano, Via San Vigilio 10 tel 02 8135341, fax 02 8137481	
progetto architettonico	
piuarch srl Fresa Fuenmayor Garbellini Tricario	
20121 Milano, Via Palermo 1 tel 02 89096130, fax 02 875506	
progetto strutture	
FVPROGETTI	
20141 Milano Via Ripamonti, 44 tel 02 58310994, fax 02 32960721	
progetto impianti	
FLU Project	
06125 Perugia, Via della Madonna Alta 138/A tel 0755849121, fax 0755847448	
	protocollo
	143
	file
	FP3595
	formato
"V-V-gr"	A4
	emissione
	12 03 2015
progetto	scala
Progetto Esecutivo ai sensi del D.M.26—2011	_:-
INTERVENTO A MILANO, VIA SAN VIGILIO 10	
titolo	tavola n.
IMPIANTO MECCANICO	11100
RELAZIONE DI CALCOLO ENERGETICO AI SENSI D.Lgs. 311/06 E LEGGE 10/91	

RELAZIONE TECNICA

DI CUI ALL'ARTICOLO 28 DELLA LEGGE 9 GENNAIO 1991, N. 10, ATTESTANTE LA RISPONDENZA ALLE PRESCRIZIONI IN MATERIA DI CONTENIMENTO DEL CONSUMO ENERGETICO DEGLI EDIFICI. DISPOSIZIONI INERENTI ALL'EFFICIENZA ENERGETICA IN EDILIZIA REGIONE LOMBARDIA D.G.R. N° VIII/8745 DEL 22/12/2008

1. INFORMAZIONI GENERALI

presente provvedimento.

Comune di MILANO	Provincia MILANO			
Progetto per la realizzazione di Ampliamento Collegio Università Milanesi				
Sito in via San Vigilio,10 - MI				
D.I.A.	del			
Classificazione dell'edificio (o del complesso di edifici) in base alla categoria di cui all'articolo 3 del DPR 26 agosto 1993, n. 412				
 E.1(1) Abitazioni civili e rurali, collegi, conventi, case di pena, caserme E.2 Edifici adibiti ad uffici e assimilabili E.7 Edifici adibiti ad attività scolastiche ed assimilabili 				
Numero delle unità	1			
Committente	FONDAZIONE COLLEG DELLE UNIVERSITÀ MILANESI	ilO		
Progettista(i) degli impianti termici e dell'isolamento dell'edificio	termico FLU.PROJECT Studio Associato			
☐ □L'edificio (o il complesso di edifici) rientra tra quelli dell'articolo 5, comma 15, del DPR n. 412/93 (utilizzo del				

2. FATTORI TIPOLOGICI DELL'EDIFICIO (O DEL COMPLESSO DI EDIFICI)

Gli elementi tipologici forniti, al solo scopo di supportare la presente relazione tecnica, sono i seguenti:
⊠□ Piante di ciascun piano degli edifici con orientamento e indicazione d'uso prevalente dei singoli locali
⊠□ Prospetti e sezioni degli edifici con evidenziazione degli eventuali sistemi di protezione solare
□□ Elaborati grafici relativi ad eventuali sistemi solari passivi specificatamente progettati per favorire lo sfruttamento degli apporti solari

3. PARAMETRI CLIMATICI DELLA LOCALITA'

Gradi giorno	2404 GG
Temperatura minima invernale di progetto	-5 °C
Temperatura massima estiva di progetto	31,9 °C
Ampiezza massima estiva di progetto	12 °C
Umidità relativa dell'aria di progetto per la climatizzazione estiva	50,00 %
Irradianza solare massima estiva su superficie orizzontale	277,68 W/m ²

4. DATI TECNICI E COSTRUTTIVI DELL'EDIFICIO (O DEL COMPLESSO DI EDIFICI) E DELLE RELATIVE STRUTTURE

Volume delle parti di edificio abitabili o agibili al lordo delle strutture che li delimitano (V)	7327,00 m ³
Superficie esterna che delimita il volume (S)	3015,09 m ²
Rapporto S/V	0,412 m ⁻¹
Superficie utile dell'edificio	1834 m²
Valore di progetto della temperatura interna per la climatizzazione invernale o il riscaldamento	20,00 °C
Valore di progetto dell'umidità relativa interna per la climatizzazione invernale	50,00 %
Valore di progetto della temperatura interna per la climatizzazione estiva o il raffrescamento	26,00 °C
Valore di progetto dell'umidità relativa interna per la climatizzazione estiva	50,00 %

ZONA TERMICA	Dest. d'uso	S [m²] che delimita il volume riscaldato V	V [m³]	S/V [m ⁻¹]
P0A Camere Piano terra	E.1(1c)	956,10	1978,30	0.48
P0B Aule Piano terra	E.7	143,02	424,96	0.34
POC Uffici Piano terra	E.2	76,10	124,56	0.61
P0D Servizi	E.1(1c)	43,77	139,22	0.31
P1A Camere Piano primo	E.1(1c)	565,48	2329,98	0.24
P2A Camere Piano secondo	E.1(1c)	1220,86	2329,98	0.52

5. DATI RELATIVI AGLI IMPIANTI

Impianti termici

Descrizione impianto

Tipologia

Impianto termico centralizzato per la climatizzazione invernale ed estiva degli ambienti attraverso una pompa di calore acqua-acqua. Produzione di acqua calda sanitaria tramite pannelli soalri termici integrati dalla pompa di calore.

Sistemi di generazione

- **Pompa di calore:** la produzione dell'acqua calda/refrigerata necessaria per la climatizzazione invernale/estiva degli ambienti avverrà attraverso una pompa di calore reversibile con condensazione ad acqua di falda, avente la caratteristica di doppio effetto in grado di produrre contemporaneamente acqua calda e refrigerata.
- Pannelli solari a circolazione forzata per la produzione di acqua calda sanitaria.
- Pannelli solari fotovoltaici per la produzione di energia elettrica.

Sistemi di termoregolazione

- Sottocentrale utenze acqua calda: regolazione compensata della temperatura di mandata dell'acqua realizzata attraverso complesso di termoregolazione costituito da valvola a tre vie modulante e sonda di temperatura per acqua ad immersione;
- Sottocentrale utenze acqua refrigerata: regolazione a punto fisso della temperatura di mandata dell'acqua realizzata attraverso complesso di termoregolazione costituito da valvola a tre vie modulante e di sonda di temperatura per acqua ad immersione;
- Singoli alloggi: la regolazione della temperatura ambiente è affidata a sonde previste in ogni locale con possibilità limitata di modifica del set-point impostato e collegate ad un sistema di supervisione monitorato dalla reception del collegio esistente;
- Il recuperatore di calore a servizio delle aule del piano terra è corredato di un pannello di comando a filo.

Tutti i circuiti dell'impianto a pavimento radiante sono dotati di valvole elettrotermiche installate sui collettori di distribuzione dell'impianto. Nel funzionamento estivo le valvole dei circuiti dei servizi igienici sono mantenute chiuse dal sistema di supervisione onde evitare fenomeni di condensa superficiale sui pavimenti.

Tutti i ventilconvettori sono dotati di valvole motorizzate a due vie comandate dal sistema di supervisione.

Sistemi di contabilizzazione dell'energia termica

Assenti.

Sistemi di distribuzione del vettore termico

- Zone con pavimento radiante: distribuzione a collettori con erogazione dell'energia termica mediante pannelli radianti a pavimento costituiti da tubazioni in polietilene reticolato con barriera alla diffusione dell'ossigeno posate su pannelli isolanti in polistirene ed annegate entro massetto additivato;.
- Isolamento tubazioni acqua calda realizzato con guaine in elastomero estruso nel rispetto dell'allegato B del DPR 412/93 e successivo DPR 551/99.

Sistemi di ventilazione forzata: tipologia

- Estrazione forzata nei servizi igienici privi di aerazione naturale realizzata mediante estrattore centrifugo (attivazione automatica con l'illuminazione del locale e timer di spegnimento ritardato) e condotti in PVC con espulsione dell'aria esausta all'esterno, in grado di garantire portate di estrazione non inferiori a 12 volumi ambiente orari.
- o Aule piano terra: Impianti di ventilazione meccanica a recupero di calore totale realizzato con recuperatore di calore, canalizzazioni in pannelli sandwich alluminio-poliuretano-alluminio e condotti flessibili, con immissione in ambiente dell'aria esterna di rinnovo attraverso le diffusori lineari con deflettori cilindrici orientabili e ripresa dagli stessi con effusori lineari con deflettori cilindrici orientabili. Portate di aria esterna determinate nel rispetto della norma UNI 10339. Prelievi aria esterna di rinnovo realizzati lontano da espulsioni di aria esausta in modo da evitare by-pass e cortocircuiti.

Sistemi di accumulo termico: tipologia

Assenti.

Sistemi di produzione e distribuzione dell'acqua calda sanitaria

La preparazione dell'acqua calda per usi sanitari è realizzata con un impianto solare termico con pannelli solari a circolazione forzata previsti sulla copertura piana dell'edificio esistente.

L'impianto solare termico comprende:

- o pannelli solari del tipo a tubi sottovuoto;
- o bollitori ad accumulo con scambiatore a serpentino per la preparazione dell'acqua calda sanitaria;
- o kit di pompaggio per la attivazione della circolazione del fluido termovettore (miscela acqua-antigelo) dai pannelli ai bollitori;
- o centraline elettroniche a microprocessore con sonde per la gestione del sistema;
- o valvolame ed accessori;
- o tubazioni in rame con giunzioni per saldobrasatura capillare isolate con guaine in elastomero estruso resistenti alle alte temperature per la realizzazione del circuito pannelli solari-bollitori.

L'impianto solare sarà integrato nella preparazione dell'acqua calda sanitaria da un bollitore con scambiatore a serpentino alimentato con l'acqua calda prodotta dalla pompa di calore tramite collettore di reintegro.

L'acqua calda sanitaria sarà distribuita alle utenze ad una temperatura costante di circa 45°C mediante un miscelatore elettronico che provvede a miscelare l'acqua calda, accumulata a circa 60°C, con l'acqua fredda di rete.

La rete di distribuzione dell'acqua calda sanitaria sarà dotata di anello di ricircolo con una elettropompa gemellare.

Condotti di evacuazione dei prodotti di combustione

Assenti.

Durezza dell'acqua di alimentazione dei generatori di calore per potenza installata maggiore o uguale a 350 kW < 15 $^{\circ}$ F

Specifiche dei generatori di energia

• N. 1 pompa di calore con condensazione ad acqua di falda a doppio effetto (rif. PC1) costituito da compressori di tipo rotativo scroll, condensatore ed evaporatore del tipo a piastre in acciaio, completo di valvole, spie,rubinetti, pressostati e di tutti i componenti necessari per la sicurezza ed il controllo, quadro elettrico a bordo macchina e pannello comandi remotizzabile.

Potenzialità Frigorifera= 86,7 kw
 Potenzialità Termica= 101 kw
 (T acqua cond. In/out 10/15°C – T acqua in/out 30/35°C)
 (T acqua cond. In/out 30/35°C – T acqua in/out 13/8°C)

o Potenza elettrica assorbita= 24,7 Kw

o COP: 4.5

Specifiche relative ai sistemi di regolazione dell'impianto

Sistema di telegestione dell'impianto termico

Sistema di supervisione di tipo DDC ad intelligenza distribuita per la gestione del funzionamento di tutti gli impianti.

Sistema di regolazione climatica

Regolazione climatica della temperatura di mandata dell'acqua calda prodotta dalla pompa di calore/caldaia a condensazione in funzione della temperatura esterna.

Numero dei livelli di programmazione della temperatura nelle 24 ore	: minimo 2

Dispositivi per la regolazione automatica della temperatura nei singoli locali o nelle singole zone ciascuna avente caratteristiche di uso ed esposizioni uniformi

Descrizione sintetica dei dispositivi	Termostati ambiente e testine elettrotermiche
---------------------------------------	---

pannelli radianti: termostati ambiente e testine elettrotermiche:

ventilconvettori: cronotermostato ambiente in ogni locale ad intervento on/off sulla elettrovalvola di ogni ventilconvettore.

Terminali di erogazione dell'energia termica

- o impianti a pavimento radiante realizzati con tubazioni in polietilene reticolato con barriera alla diffusione dell'ossigeno posati su pannelli preformati di polistirene ed annegati entro massetto in cls addittivato:
- o ventilconvettori (per quantità, tipologie e rese termiche nominali si veda progetto allegato).

Condotti di evacuazione dei prodotti di combustione

Assenti

Sistemi di trattamento dell'acqua

Esistenti.

Impianti solari termici

La produzione di acqua calda sanitaria, integrata dalla pompa di calore, sarà realizzata con pannelli solari a tubi sottovuoto a circolazione forzata e serbatoio di accumulo.

Ogni pannello solare avrà le seguenti caratteristiche:

- Nr pannelli = 27
- Superficie captante netta pannello = 3,021 m²
 Capacità accumulo = 2000 litri
- Installazione: in copertura con esposizione sud e inclinazione di 30°.

6. PRINCIPALI RISULTATI DEI CALCOLI

a) Involucro edilizio e ricambi d'aria

Caratteristiche termiche, igrometriche e di massa superficiale dei componenti opachi dell'involucro edilizio.

(Vedi allegati alla presente relazione)

Caratteristiche termiche dei componenti finestrati dell'involucro edilizio Classe di permeabilità all'aria dei serramenti esterni

(Vedi allegati alla presente relazione)

Valutazione dell'efficacia dei sistemi schermanti delle superfici vetrate

In ottemperanza di quanto previsto al punto 5.4 lettera a) delle Disposizioni allegate al DGR 8745 del 22/12/2008 e al Decreto 14006 del 15/12/2009, i vetri utilizzati avranno una trasmittanza di energia solare diretta non superiore a 0,30.

Attenuazione dei ponti termici (provvedimenti e calcoli)

Tutti i ponti termici saranno corretti e le verifiche saranno eseguite "a ponte termico corretto".

Trasmittanza termica (U) degli elementi divisori tra alloggi o unità immobiliari confinanti

(Vedi allegati alla presente relazione)

Verifica termoigrometrica

(Vedi allegati alla presente relazione)

Ricambi d'aria

Ventilazione naturale (media nelle 24h)	0,3 camere 0,86 uffici	
Ventilazione meccanica Impianto di ventilazione meccanica a recupero di calore totale		
Portata totale d'aria di ricambio (G) solo nei casi di ventilazione meccanica controllata	575,65 m³/h	
Portata totale dell'aria circolante attraverso apparecchiature di recupero del calore disperso	575,65 m³/h	
Rendimento termico delle apparecchiature di recupero del calore disperso	54,2 %	

b) Valore dei rendimenti medi stagionali di progetto	
Rendimento del sottosistema di generazione	195%

Rendimento del sottosistema di regolazione 96 %

Rendimento del sottosistema di distribuzione	98,95 %
Rendimento del sottosistema di emissione	94 %
Efficienza globale media stagionale	165 %
c) Indice di prestazione energetica per la climatizzazione invernal	e o il riscaldamento (EP _н)
Valore di progetto	6,90 [kWh/m³ anno]
Confronto con il valore limite riportato all'allegato A del presente provvedimento	15,06 [kWh/m³ anno]
Fabbisogno di combustibile	[Nm³/anno]
Fabbisogno di energia elettrica da rete	24864,01 kWh _e
Produzione di energia elettrica locale	2836,74 kWh
d) Indice di prestazione energetica normalizzato per la climatizzaz riscaldamento	cione invernale o il
Valore di progetto	kWh/m²GG
e) Indice di prestazione energetica per la produzione di acqua ca	da sanitaria
Valore di progetto (Destinazione d'uso direzionale)	3,52 [kWh/m³ anno]
Fabbisogno di combustibile	[Nm³/anno]
Fabbisogno di energia elettrica da rete	22248,04 kWh _e
Produzione di energia elettrica locale	13281,70 kWh _e
f) Impianti solari termici per la produzione di acqua calda sanitari	a
Percentuale di copertura del fabbisogno annuo	>50 [%]
	1
g) Impianti fotovoltaici	
Percentuale di copertura del fabbisogno annuo	29,94 [%]
h) Indice di prestazione termica per la climatizzazione estiva o il r	raffrescamento (ET _C)
Valore di progetto	6,88 [kWh/m³ anno]

7. ELEMENTI SPECIFICI CHE MOTIVANO EVENTUALI DEROGHE A NORME FISSATE DALLA NORMATIVA VIGENTE

a)

•	Esiste deroga alla temperatura massima ammessa negli ambienti?		NO
•	Esiste deroga alla produzione centralizzata mediante generatori di calore separati per la climatizzazione invernale e per l'acqua calda sanitaria?	SI	
•	Esiste deroga alla adozione di dispositivi di regolazione automatica della temperatura nei singoli locali o zone?		NO

8. VALUTAZIONI SPECIFICHE PER L'UTILIZZO DELLE FONTI DI ENERGIA RINNOVABILE

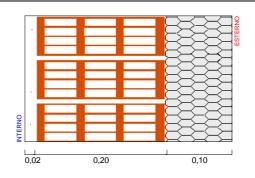
L'edificio oggetto della presente relazione è servito da una pompa di calore reversibile acqua-acqua che provvede alla climatizzazione invernale ed estiva e alla produzione di acqua calda sanitaria attraverso un bollitore di accumulo esterno alla pompa di calore stessa e il contributo di un impianto solare termico con pannelli solari a tubi sottovuoto.

È prevista la realizzazione di un impianto fotovoltaico per la produzione di energia elettrica. Per le caratteristiche prestazionali si rimanda al progetto degli impianti elettrici.

L'impiego della pompa di calore abbinata all'impianto solare termico e all'impianto solare fotovoltaico garantisce il contemporaneo rispetto della copertura, tramite il ricorso ad energia prodotta da impianti alimentati da fonti rinnovabili o da tecnologie assimilate a fonti rinnovabili (pompa di calore), del 50% dei consumi previsti per l'acqua calda sanitaria e del 35% della somma dei consumi previsti per l'acqua calda sanitaria, il riscaldamento e il raffrescamento come previsto dalla normativa vigente in materia (art.11, comma 1, Allegato 3 - D.Lgs. 28/2011).

9. DOCUMENTAZIONE ALLEGATA

- Piante di ciascun piano degli edifici con orientamento e indicazione d'uso prevalente dei singoli locali.
- > Sezioni degli edifici con evidenziazione di eventuali sistemi di protezione solare
- > Schemi funzionali dell'impianto termico contenenti gli elementi di cui all'analoga voce del paragrafo "Dati relativi agli impianti termici"
- > Tabella con indicazione delle caratteristiche termiche, igrometriche e massa efficace dei componenti opachi dell'involucro edilizio.
- Tabelle con indicazione delle caratteristiche termiche dei componenti finestrati dell'involucro edilizio e loro permeabilità all'aria.


Codice Descrizione Note

PE01 PE in laterizio corridoi Chiusura verticale tipo su corridoi VE=Verticale esterno

Giacitura Origine dei dati Da stratigrafia

RIEPILOGO

Spessore	m	0,315
Massa superficiale	kg/m²	172,500
Massa totale	kg/m²	193,500
Capacità termica interna	kJ/(m²⋅K)	41,15
Capacità termica esterna	kJ/(m²·K)	5,33
Resistenza termica dei materiali	m²-K/W	4,018
Resistenza termica totale	m²-K/W	4,188
Trasmittanza termica totale	W/(m²·K)	0,239
Trasmittanza termica periodica	W/(m ² ·K)	0,044

STRATIGRAFIA

	Codice materiale	Descrizione	d m	λ W/(m-K)	C W/(m ⋅K)	ρ kg/m³	cp J/(kg⋅K)	R m²-K/W
		Resistenza superficiale interna						0,130
01	INT07	Intonaco di calce e gesso	0,01500	0,700	0,000	1400,000	840	0,021
02	MUR52A	POROTON 20cm 700 Tamp.	0,20000	0,207	0,000	845,000	840	0,966
03	ISO52	Polistirene espanso estruso	0,10000	0,033	0,000	35,000	1250	3,030
		Resistenza superficiale esterna						0,040

VERIFICA DI TRASMITTANZA TERMICA

Riferimento normativo Verifica limiti come Zona climatica Trasmittanza limite

Trasmittanza termica
Verifica

E 0,34 W/(m²·K) 0,239 W/(m²·K) Positiva

PE in laterizio corridoi

VERIFICA IGROMETRICA

Condizioni al contorno

Ambiente confinante

Esterno UNI 10349 - Media mensile Temperatura esterna UNI 10349 - Media mensile UNI EN ISO 13788 N.A. 1.2 No Umidità relativa esterna Temperatura interna Struttura leggera

65 % Umidità relativa Umidità relativa massima accettabile 80 %

	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
θe [°C]	1,70	4,20	9,20	14,00	17,90	22,50	25,10	24,10	20,40	14,00	7,90	3,10
pe [Pa]	590	645	943	1163	1326	1840	1736	2012	1921	1412	958	671
θi [°C]	20,00	20,00	20,00	20,00	18,00	22,50	25,10	24,10	20,40	20,00	20,00	20,00
p _i [Pa]	1636	1636	1636	1636	1444	1908	2231	2101	1677	1636	1636	1636

Proprietà dei materiali

Codice Materiale	Descrizione	d m	R m²·K/W	μ	s _d m
_	Resistenza superficiale esterna		0,040		
ISO52	Polistirene espanso estruso	0,10000	3,030	199	19,90000
MUR52A	POROTON 20cm 700 Tamp.	0,20000	0,966	10	2,00000
INT07	Intonaco di calce e gesso	0,01500	0,021	10	0,15000
	Resistenza superficiale interna		0,130		

Verifica della temperatura superficiale (UNI EN ISO 13788 §5)

Mese critico Fattore di temperatura, f_{Rsi} GENNAIO 0,942 Fattore di temperatura massimo, fRsi,max 0,883 La struttura non è soggetta a fenomeni di condensa superficiale. Positiva

Risultati di calcolo

	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
θe [°C]	1,70	4,20	9,20	14,00	17,90	22,50	25,10	24,10	20,40	14,00	7,90	3,10
pe [Pa]	590	645	943	1163	1326	1840	1736	2012	1921	1412	958	671
θi [°C]	20,00	20,00	20,00	20,00	18,00	22,50	25,10	24,10	20,40	20,00	20,00	20,00
p _i [Pa]	1636	1636	1636	1636	1444	1908	2231	2101	1677	1636	1636	1636
p _S [Pa]	2045	2045	2045	2045	1805	2385	2789	2626	2096	2045	2045	2045
θsi,min [°C]	17,86	17,86	17,86	17,86	15,89	20,33	22,89	21,90	18,25	17,86	17,86	17,86
fRsi	0,88	0,87	0,80	0,64	-20,10	0,00	0,00	0,00	0,00	0,64	0,82	0,87
θsi [°C]	18,94	19,08	19,37	19,65	17,99	22,50	25,10	24,10	20,40	19,65	19,30	19,02

12

PE01 PE in laterizio corridoi

Verifica della condensazione interstiziale (UNI EN ISO 13788 §6)

Non si verifica condensazione in nessuna interfaccia per nessun mese. La struttura non è soggetta a fenomeni di condensa interstiziale. Verifica Positiva

	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
Esterno												
θ [°C]	1,7	4,2	9,2	14	17,9	22,5	25,1	24,1	20,4	14	7,9	3,1
p _V [Pa]	590	645	943	1163	1326	1840	1736	2012	1921	1412	958	671
ps [Pa]	699	833	1171	1604	2050	2724	3185	3000	2395	1604	1073	771
Superficie esterna	а											
θ [°C]	1,87	4,35	9,30	14,06	17,90	22,50	25,10	24,10	20,40	14,06	8,01	3,26
р _V [Ра]	590	645	943	1163	1326	1840	1736	2012	1921	1412	958	671
ps [Pa]	699	833	1171	1604	2050	2724	3185	3000	2395	1604	1073	771
g _C [kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
gev[kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
Ma [kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
Interfaccia 1(ISO	52 - MUR52A	.)										
θ [°C]	14,74	15,46	16,90	18,28	17,97	22,50	25,10	24,10	20,40	18,28	16,52	15,15
pv [Pa]	1534	1539	1568	1590	1432	1901	2183	2092	1701	1614	1570	1542
ps [Pa]	1677	1756	1924	2099	2059	2724	3185	3000	2395	2099	1879	1721
gc [kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
gev[kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
Ma [kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
Interfaccia 2(MUF	R52A - INT07)										
θ [°C]	18,85	19,01	19,32	19,62	17,99	22,50	25,10	24,10	20,40	19,62	19,24	18,94
pv [Pa]	1629	1629	1631	1633	1443	1908	2228	2100	1679	1634	1631	1629
ps [Pa]	2175	2197	2240	2283	2062	2724	3185	3000	2395	2283	2229	2187
gc [kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
gev[kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
Ma [kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000

Codice PE01

Descrizione PE in laterizio corridoi

VERIFICA MASSA SUPERFICIALE E TRASMITTANZA TERMICA PERIODICA

Riferimento normativo Verifica limiti come Zona climatica

Zona climatica E Località Milano

Irradianza sul piano orizzontale nel mese di massima insolazione estiva Im,s:

valore di progetto
valore di confronto

Verifica richiesta

valore di confronto
290,00 W/m²

Verifica richiesta
No

Verifica massa superficiale

 $\begin{array}{lll} \mbox{Valore di progetto} & 172,500 \ \mbox{kg/m}^2 \\ \mbox{Valore di confronto} & 230,00 \ \mbox{kg/m}^2 \\ \mbox{Verifica} & \mbox{Non richiesta} \end{array}$

Verifica trasmittanza termica periodica

Risultati di calcolo

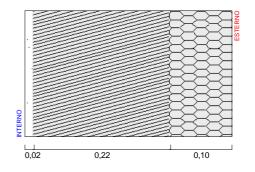
	Modulo	Δt h
Matrice di trasferimento		
Z11	67,472	-11,17
Z12	22,876 W/(m ² ·K)	-1,55
Z21	23,154 W/(m ² ·K)	2,29
Z22	67,472	-11,17
Ammettenze termiche		
Lato interno	2,950 W/(m ² ·K)	2,38
Lato esterno	0,344 W/(m ² ·K)	1,46
Caratteristiche termiche dinamiche		
Trasmittanza termica periodica	0,044 W/(m ² ·K)	-10,450
Fattore di decremento	0,183	

Trasmittanza termica periodica

valore di progetto
valore di confronto

0,044 W/(m²-K)
valore di confronto

0,120 W/(m²-K)


Verifica

Non richiesta

PE02 PE in C.A. su testate Chiusura verticale tipo su testate VE=Verticale esterno Da stratigrafia Codice Descrizione Note Giacitura Origine dei dati

RIEPILOGO

Spessore	m	0,335
Massa superficiale	kg/m²	421,500
Massa totale	kg/m²	442,500
Capacità termica interna	kJ/(m²·K)	66,33
Capacità termica esterna	kJ/(m²·K)	5,34
Resistenza termica dei materiali	m²-K/W	3,259
Resistenza termica totale	m²-K/W	3,429
Trasmittanza termica totale	W/(m ² ·K)	0,292
Trasmittanza termica periodica	W/(m²-K)	0,045

STRATIGRAFIA

	Codice materiale	Descrizione	d m	λ W/(m-K)	C W/(m²·K)	ρ kg/m³	c _p J/(kg⋅K)	R m²·K/W
		Resistenza superficiale interna						0,130
01	INT07	Intonaco di calce e gesso	0,01500	0,700	0,000	1400,000	840	0,021
02	CLS093	CLS in genere (int. o est.)	0,22000	1,060	0,000	1900,000	880	0,208
03	IS 52	Polistirene espanso estruso Resistenza superficiale esterna	0,10000	0,033	0,000	35,000	1250	3,030 0,040

VERIFICA DI TRASMITTANZA TERMICA

Riferimento normativo Verifica limiti come Zona climatica Trasmittanza limite Trasmittanza termica Verifica

E 0,34 W/(m²⋅K) 0,292 W/(m²⋅K) Positiva

PE02 PE in C.A. su testate

VERIFICA IGROMETRICA

Condizioni al contorno

Ambiente confinante

Esterno UNI 10349 - Media mensile Temperatura esterna UNI 10349 - Media mensile UNI EN ISO 13788 N.A. 1.2 No Umidità relativa esterna Temperatura interna Struttura leggera

65 % Umidità relativa Umidità relativa massima accettabile 80 %

	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
θe [°C]	1,70	4,20	9,20	14,00	17,90	22,50	25,10	24,10	20,40	14,00	7,90	3,10
pe [Pa]	590	645	943	1163	1326	1840	1736	2012	1921	1412	958	671
θi [°C]	20,00	20,00	20,00	20,00	18,00	22,50	25,10	24,10	20,40	20,00	20,00	20,00
pi [Pa]	1636	1636	1636	1636	1444	1908	2231	2101	1677	1636	1636	1636

Proprietà dei materiali

Codice Materiale	Descrizione	d m	R m²-K/W	μ	s _d m
	Resistenza superficiale esterna		0,040		_
ISO52	Polistirene espanso estruso	0,10000	3,030	199	19,90000
CLS093	CLS in genere (int. o est.)	0,22000	0,208	99	21,78000
INT07	Intonaco di calce e gesso	0,01500	0,021	10	0,15000
	Resistenza superficiale interna		0,130		

Verifica della temperatura superficiale (UNI EN ISO 13788 §5)

Mese critico Fattore di temperatura, f_{Rsi} **GENNAIO** 0,930 Fattore di temperatura massimo, fRsi,max 0,883 La struttura non è soggetta a fenomeni di condensa superficiale. Positiva

Risultati di calcolo

	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
θe [°C]	1,70	4,20	9,20	14,00	17,90	22,50	25,10	24,10	20,40	14,00	7,90	3,10
pe [Pa]	590	645	943	1163	1326	1840	1736	2012	1921	1412	958	671
θį [°C]	20,00	20,00	20,00	20,00	18,00	22,50	25,10	24,10	20,40	20,00	20,00	20,00
p _i [Pa]	1636	1636	1636	1636	1444	1908	2231	2101	1677	1636	1636	1636
p _S [Pa]	2045	2045	2045	2045	1805	2385	2789	2626	2096	2045	2045	2045
θsi,min [°C]	17,86	17,86	17,86	17,86	15,89	20,33	22,89	21,90	18,25	17,86	17,86	17,86
fRsi	0,88	0,87	0,80	0,64	-20,10	0,00	0,00	0,00	0,00	0,64	0,82	0,87
θsi [°C]	18,71	18,89	19,24	19,58	17,99	22,50	25,10	24,10	20,40	19,58	19,15	18,81

16

PE02 PE in C.A. su testate

Verifica della condensazione interstiziale (UNI EN ISO 13788 §6)

Non si verifica condensazione in nessuna interfaccia per nessun mese. La struttura non è soggetta a fenomeni di condensa interstiziale. Verifica Positiva

	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
Esterno												
θ [°C]	1,7	4,2	9,2	14	17,9	22,5	25,1	24,1	20,4	14	7,9	3,1
p _V [Pa]	590	645	943	1163	1326	1840	1736	2012	1921	1412	958	671
p _S [Pa]	701	835	1173	1605	2050	2724	3185	3000	2395	1605	1075	773
Superficie esterna	а											
θ [°C]	1,91	4,38	9,32	14,07	17,90	22,50	25,10	24,10	20,40	14,07	8,04	3,29
р _V [Ра]	590	645	943	1163	1326	1840	1736	2012	1921	1412	958	671
ps [Pa]	701	835	1173	1605	2050	2724	3185	3000	2395	1605	1075	773
g _C [kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
gev[kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
Ma [kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
Interfaccia 1(ISO	52 - CLS093)											
θ [°C]	17,53	17,87	18,54	19,19	17,99	22,50	25,10	24,10	20,40	19,19	18,37	17,72
pv [Pa]	1088	1116	1273	1388	1382	1872	1971	2054	1805	1519	1281	1130
ps [Pa]	2003	2046	2134	2222	2061	2724	3185	3000	2395	2222	2111	2027
gc [kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
gev[kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
Ma [kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
Interfaccia 2(CLS	093 - INT07)											
θ [°C]	18,60	18,79	19,18	19,54	17,99	22,50	25,10	24,10	20,40	19,54	19,08	18,71
pv [Pa]	1632	1632	1634	1634	1444	1908	2229	2101	1678	1635	1634	1633
ps [Pa]	2142	2168	2220	2271	2062	2724	3185	3000	2395	2271	2207	2157
gc [kg/m²]	0,00000	0,00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0,00000	0.00000	0,00000
gev[kg/m²]	0,00000	0,00000	0,00000	0.00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0.00000	0,00000
Ma [kg/m²]	0,00000	0,00000	0,00000	0.00000	0,00000	0,00000	0,00000	0,00000	0,00000	0.00000	0,00000	0.00000
	-,	,	,	,	,	,	,	,	.,	-,	.,	,

Codice

PE02 PE in C.A. su testate Descrizione

VERIFICA MASSA SUPERFICIALE E TRASMITTANZA TERMICA PERIODICA

Riferimento normativo Verifica limiti come Zona climatica

Е Località Milano

Irradianza sul piano orizzontale nel mese di massima insolazione estiva Im,s:

277,68 W/m² 290,00 W/m² **No** valore di progetto valore di confronto
Verifica richiesta

Verifica massa superficiale

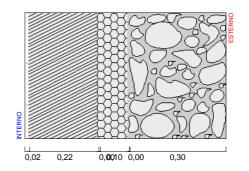
421,500 kg/m² 230,00 kg/m² **Non richiesta** Valore di progetto Valore di confronto **Verifica**

Verifica trasmittanza termica periodica

Risultati di calcolo

	Modulo	Δt h
Matrice di trasferimento		
Z11	106,060	10,24
Z12	22,174 W/(m ² ·K)	-2,85
Z21	36,768 W/(m ² ·K)	-0,53
Z22	106,060	10,24
Ammettenze termiche		
Lato interno	4,783 W/(m ² ·K)	1,09
Lato esterno	0,347 W/(m ² ·K)	1,24
Caratteristiche termiche dinamiche		
Trasmittanza termica periodica	0,045 W/(m ² ·K)	-9,150
Fattore di decremento	0,155	

Trasmittanza termica periodica


valore di progetto valore di confronto 0,045 W/(m²·K) 0,120 W/(m²·K) Verifica Non richiesta

PE02B PE in C.A. controterra Chiusura verticale controterra (aule) VE=Verticale esterno

Codice Descrizione Note Giacitura Origine dei dati Da stratigrafia

RIEPILOGO

Spessore	m	0,639
Massa superficiale	kg/m²	426,570
Massa totale	kg/m²	897,570
Capacità termica interna	kJ/(m²⋅K)	65,72
Capacità termica esterna	kJ/(m ² ·K)	87,91
Resistenza termica dei materiali	m²-K/W	3,711
Resistenza termica totale	m²-K/W	3,881
Trasmittanza termica totale	W/(m²⋅K)	0,258
Trasmittanza termica periodica	W/(m²·K)	0,006

STRATIGRAFIA

	Codice materiale	Descrizione	d m	λ W/(m·K)	C W/(m²·K)	ρ kg/m³	c _p J/(kg⋅K)	R m²·K/W
		Resistenza superficiale interna					(3 /	0,130
01	INT07	Intonaco di calce e gesso	0,01500	0,700	0,000	1400,000	840	0,021
02	CLS093	CLS in genere (int. o est.)	0,22000	1,060	0,000	1900,000	880	0,208
03	BV 12	Foglio di AL sp. >0.08 mm	0,00010	220,000	0,000	2700,000	960	0,000
04	ISO52	Polistirene espanso estruso	0,10000	0,033	0,000	35,000	1250	3,030
05	IMP14	Guaina bitume-polimero	0,00400	0,170	0,000	1200,000	920	0,024
06	MSR16	Ciotoli e pietre frantumate	0,30000	0,700	0,000	1500,000	840	0,429
		Resistenza superficiale esterna						0,040

VERIFICA DI TRASMITTANZA TERMICA

Riferimento normativo Verifica limiti come Zona climatica Trasmittanza limite Trasmittanza termica

0,34 W/(m²·K) 0,258 W/(m²·K) Positiva Verifica

PE02B PE in C.A. controterra

VERIFICA IGROMETRICA

Condizioni al contorno

Ambiente confinante

Terreno UNI 10349 - Media mensile Temperatura esterna UNI 10349 - Media mensile UNI EN ISO 13788 N.A. 1.2 No Umidità relativa esterna Temperatura interna Struttura leggera

65 % Umidità relativa Umidità relativa massima accettabile 80 %

	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
θe [°C]	13,67	13,67	13,67	13,67	13,67	13,67	13,67	13,67	13,67	13,67	13,67	13,67
pe [Pa]	1565	1565	1565	1565	1565	1565	1565	1565	1565	1565	1565	1565
θi [°C]	20,00	20,00	20,00	20,00	20,00	20,00	20,00	20,00	20,00	20,00	20,00	20,00
pi [Pa]	1636	1636	1636	1636	1636	1636	1636	1636	1636	1636	1636	1636

Proprietà dei materiali

Codice Materiale	Descrizione	d m	R m²-K/W	μ	s _d m
-	Resistenza superficiale esterna		0.040		
MSR16	Ciotoli e pietre frantumate	0,30000	0,429	5	1,50000
IMP14	Guaina bitume-polimero	0,00400	0,024	40000	160,00000
ISO52	Polistirene espanso estruso	0,10000	3,030	199	19,90000
BVA12	Foglio di AL sp. >0.08 mm	0,00010	0,000	2000000	200,00000
CLS093	CLS in genere (int. o est.)	0,22000	0,208	99	21,78000
INT07	Intonaco di calce e gesso	0,01500	0,021	10	0,15000
	Resistenza superficiale interna		0,130		

Verifica della temperatura superficiale (UNI EN ISO 13788 §5)

Mese critico Fattore di temperatura, f_{Rsi} GENNAIO 0,938 Fattore di temperatura massimo, fRsi,max 0,662 La struttura non è soggetta a fenomeni di condensa superficiale. Verifica Positiva

	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
θe [°C]	13,67	13,67	13,67	13,67	13,67	13,67	13,67	13,67	13,67	13,67	13,67	13,67
pe [Pa]	1565	1565	1565	1565	1565	1565	1565	1565	1565	1565	1565	1565
θ _i [°C]	20,00	20,00	20,00	20,00	20,00	20,00	20,00	20,00	20,00	20,00	20,00	20,00
p _i [Pa]	1636	1636	1636	1636	1636	1636	1636	1636	1636	1636	1636	1636
p _S [Pa]	2045	2045	2045	2045	2045	2045	2045	2045	2045	2045	2045	2045
θsi,min [°C]	17,86	17,86	17,86	17,86	17,86	17,86	17,86	17,86	17,86	17,86	17,86	17,86
fRsi	0,66	0,66	0,66	0,66	0,66	0,66	0,66	0,66	0,66	0,66	0,66	0,66
θsi [°C]	19,60	19,60	19,60	19,60	19,60	19,60	19,60	19,60	19,60	19,60	19,60	19,60

PE02B PE in C.A. controterra

Verifica della condensazione interstiziale (UNI EN ISO 13788 §6)

Non si verifica condensazione in nessuna interfaccia per nessun mese. La struttura non è soggetta a fenomeni di condensa interstiziale. Verifica Positiva

	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
Esterno												
θ [°C]	13,67	13,67	13,67	13,67	13,67	13,67	13,67	13,67	13,67	13,67	13,67	13,67
p _V [Pa]	1565	1565	1565	1565	1565	1565	1565	1565	1565	1565	1565	1565
ps [Pa]	1564	1564	1564	1564	1564	1564	1564	1564	1564	1564	1564	1564
Superficie esterna	ı											
θ [°C]	13,67	13,67	13,67	13,67	13,67	13,67	13,67	13,67	13,67	13,67	13,67	13,67
p _V [Pa]	1565	1565	1565	1565	1565	1565	1565	1565	1565	1565	1565	1565
ps [Pa]	1564	1564	1564	1564	1564	1564	1564	1564	1564	1564	1564	1564
gc [kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
gev[kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
Ma [kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
Interfaccia 1(MSR	16 - IMP14)											
θ [°C]	14,36	14,36	14,36	14,36	14,36	14,36	14,36	14,36	14,36	14,36	14,36	14,36
pv [Pa]	1565	1565	1565	1565	1565	1565	1565	1565	1565	1565	1565	1565
ps [Pa]	1635	1635	1635	1635	1635	1635	1635	1635	1635	1635	1635	1635
gc [kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
gev[kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
Ma [kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
Interfaccia 2(IMP1	4 - ISO52)											
θ [°C]	14,39	14,39	14,39	14,39	14,39	14,39	14,39	14,39	14,39	14,39	14,39	14,39
pv [Pa]	1593	1593	1593	1593	1593	1593	1593	1593	1593	1593	1593	1593
ps [Pa]	1639	1639	1639	1639	1639	1639	1639	1639	1639	1639	1639	1639
gc [kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
gev[kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
Ma [kg/m²]	0,00000	0,00000	0.00000	0.00000	0,00000	0,00000	0.00000	0.00000	0,00000	0,00000	0.00000	0,00000
Interfaccia 3(ISO5	2 - BVA12)											
θ [°C]	19,23	19,23	19,23	19,23	19,23	19,23	19,23	19,23	19,23	19,23	19,23	19,23
pv [Pa]	1597	1597	1597	1597	1597	1597	1597	1597	1597	1597	1597	1597
ps [Pa]	2229	2229	2229	2229	2229	2229	2229	2229	2229	2229	2229	2229
gc [kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
gev[kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
Ma [kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
Interfaccia 4(BVA			0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
θ [°C]	19,23	19,23	19,23	19,23	19,23	19,23	19,23	19,23	19,23	19,23	19,23	19,23
pv [Pa]	1632	1632	1632	1632	1632	1632	1632	1632	1632	1632	1632	1632
ps [Pa]	2229	2229	2229	2229	2229	2229	2229	2229	2229	2229	2229	2229
gc [kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
gev[kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
Ma [kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
Interfaccia 5(CLS)												
θ [°C]	19,57	19,57	19,57	19,57	19,57	19,57	19,57	19,57	19,57	19,57	19,57	19,57
pv [Pa]	1636	1636	1636	1636	1636	1636	1636	1636	1636	1636	1636	1636
ps [Pa]	2275	2275	2275	2275	2275	2275	2275	2275	2275	2275	2275	2275
gc [kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
gev[kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
Ma [kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000

Codice

PE02B PE in C.A. controterra Descrizione

VERIFICA MASSA SUPERFICIALE E TRASMITTANZA TERMICA PERIODICA

Riferimento normativo Verifica limiti come Zona climatica

Е Località Milano

Irradianza sul piano orizzontale nel mese di massima insolazione estiva Im,s:

277,68 W/m² 290,00 W/m² **No** valore di progetto valore di confronto
Verifica richiesta

Verifica massa superficiale

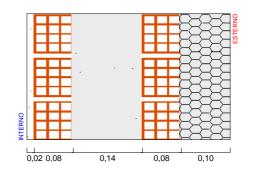
426,570 kg/m² 230,00 kg/m² **Non richiesta** Valore di progetto Valore di confronto **Verifica**

Verifica trasmittanza termica periodica

Risultati di calcolo

	Modulo	Δt
		h
Matrice di trasferimento		
Z11	798,067	-3,74
Z12	166,874 W/(m ² ·K)	7,18
Z21	5105,827 W/(m ² ⋅K)	10,53
Z22	798,067	-3,74
Ammettenze termiche		
Lato interno	4,782 W/(m ² ·K)	1,09
Lato esterno	6,398 W/(m ² ·K)	2,26
Caratteristiche termiche dinamiche		
Trasmittanza termica periodica	0,006 W/(m ² ·K)	-19,180
Fattore di decremento	0,023	

Trasmittanza termica periodica


valore di progetto valore di confronto 0,006 W/(m²·K) 0,120 W/(m²·K) Verifica Non richiesta

PE03 PE in laterizio su testate Chiusura verticale tipo su testate VE=Verticale esterno Da stratigrafia

Codice Descrizione Note Giacitura Origine dei dati

RIEPILOGO

Spessore	m	0,415
Massa superficiale	kg/m²	147,682
Massa totale	kg/m²	168,682
Capacità termica interna	kJ/(m²⋅K)	43,35
Capacità termica esterna	kJ/(m ² ·K)	5,49
Resistenza termica dei materiali	m²-K/W	3,982
Resistenza termica totale	m²-K/W	4,152
Trasmittanza termica totale	W/(m ² ·K)	0,241
Trasmittanza termica periodica	W/(m²·K)	0,054

STRATIGRAFIA

	Codice materiale	Descrizione	d m	λ W/(m·K)	C W/(m²⋅K)	ρ kg/m³	c _p J/(kg⋅K)	R m²·K/W
		Resistenza superficiale interna						0,130
01	INT07	Intonaco di calce e gesso	0,01500	0,700	0,000	1400,000	840	0,021
02	MUR40A	POROTON 8cm 700 Tamp.	0,08000	0,225	0,000	900,000	840	0,356
03	INA08	Int rcap. vert. da 100 mm	0,14000	0,640	0,000	1,300	1000	0,219
04	MUR40A	POROTON 8cm 700 Tamp.	0,08000	0,225	0,000	900,000	840	0,356
05	ISO52	Polistirene espanso estruso Resistenza superficiale esterna	0,10000	0,033	0,000	35,000	1250	3,030 0,040

VERIFICA DI TRASMITTANZA TERMICA

Riferimento normativo Verifica limiti come Zona climatica Trasmittanza limite

E 0,34 W/(m²·K) 0,241 W/(m²·K) Positiva Trasmittanza termica Verifica

PE03 PE in laterizio su testate

VERIFICA IGROMETRICA

Condizioni al contorno

Ambiente confinante

Esterno UNI 10349 - Media mensile Temperatura esterna UNI 10349 - Media mensile UNI EN ISO 13788 N.A. 1.2 No Umidità relativa esterna Temperatura interna Struttura leggera

65 % Umidità relativa Umidità relativa massima accettabile 80 %

	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
θe [°C]	1,70	4,20	9,20	14,00	17,90	22,50	25,10	24,10	20,40	14,00	7,90	3,10
pe [Pa]	590	645	943	1163	1326	1840	1736	2012	1921	1412	958	671
θi [°C]	20,00	20,00	20,00	20,00	18,00	22,50	25,10	24,10	20,40	20,00	20,00	20,00
pi [Pa]	1636	1636	1636	1636	1444	1908	2231	2101	1677	1636	1636	1636

Proprietà dei materiali

Codice Materiale	Descrizione	d m	R m²⋅K/W	μ	s _d m
	Resistenza superficiale esterna		0.040		
ISO52	Polistirene espanso estruso	0,10000	3,030	199	19,90000
MUR40A	POROTON 8cm 700 Tamp.	0,08000	0,356	10	0,80000
INA08	Intercap. vert. da 100 mm	0,14000	0,219	1	0,14000
MUR40A	POROTON 8cm 700 Tamp.	0,08000	0,356	10	0,80000
INT07	Intonaco di calce e gesso	0,01500	0,021	10	0,15000
	Resistenza superficiale interna		0,130		

Verifica della temperatura superficiale (UNI EN ISO 13788 §5)

GENNAIO Mese critico Fattore di temperatura, f_{Rsi} 0,941 Fattore di temperatura massimo, f_{Rsi,max} 0,883
La struttura non è soggetta a fenomeni di condensa superficiale.

Verifica Positiva

	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
θe [°C]	1,70	4,20	9,20	14,00	17,90	22,50	25,10	24,10	20,40	14,00	7,90	3,10
pe [Pa]	590	645	943	1163	1326	1840	1736	2012	1921	1412	958	671
θi [°C]	20,00	20,00	20,00	20,00	18,00	22,50	25,10	24,10	20,40	20,00	20,00	20,00
p _i [Pa]	1636	1636	1636	1636	1444	1908	2231	2101	1677	1636	1636	1636
p _S [Pa]	2045	2045	2045	2045	1805	2385	2789	2626	2096	2045	2045	2045
θsi,min [°C]	17,86	17,86	17,86	17,86	15,89	20,33	22,89	21,90	18,25	17,86	17,86	17,86
fRsi	0,88	0,87	0,80	0,64	-20,10	0,00	0,00	0,00	0,00	0,64	0,82	0,87
θsi [°C]	18,93	19,08	19,37	19,65	17,99	22,50	25,10	24,10	20,40	19,65	19,29	19,01

PE03 PE in laterizio su testate

Verifica della condensazione interstiziale (UNI EN ISO 13788 §6)

Non si verifica condensazione in nessuna interfaccia per nessun mese. La struttura non è soggetta a fenomeni di condensa interstiziale. Verifica Positiva

	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
Esterno												
θ [°C]	1,7	4,2	9,2	14	17,9	22,5	25,1	24,1	20,4	14	7,9	3,1
p _V [Pa]	590	645	943	1163	1326	1840	1736	2012	1921	1412	958	671
ps [Pa]	699	833	1171	1604	2050	2724	3185	3000	2395	1604	1073	771
Superficie esterna												
θ [°C]	1,87	4,35	9,30	14,06	17,90	22,50	25,10	24,10	20,40	14,06	8,01	3,26
p _V [Pa]	590	645	943	1163	1326	1840	1736	2012	1921	1412	958	671
ps [Pa]	699	833	1171	1604	2050	2724	3185	3000	2395	1604	1073	771
g _C [kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
gev[kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
Ma [kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
Interfaccia 1(ISO5			40.00	40.04	47.07	00.50	05.40	04.40	00.40	40.04	40.00	45.04
θ [°C]	14,85	15,55	16,96	18,31	17,97	22,50	25,10	24,10	20,40	18,31	16,60	15,24
pv [Pa] ps [Pa]	1545 1688	1550 1766	1576 1932	1595 2104	1434 2059	1902 2724	2188 3185	2093 3000	1698 2395	1617 2104	1577 1888	1552 1731
ps [Fa] gc [kg/m²]	0.00000	0,00000	0,00000	0,00000	0.00000	0,00000	0,00000	0.00000	0.00000	0.00000	0,00000	0.00000
gev[kg/m²]	0,00000	0,00000	0,00000	0,00000	0.00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
Ma [kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
Interfaccia 2(MUR	,	,	0,00000	0,00000	0,00000	0,00000	0,00000	0,0000	0,0000	0,00000	0,0000	0,00000
θ [°C]	16,38	16,87	17,86	18,81	17,98	22,50	25,10	24,10	20,40	18,81	17,60	16,65
pv [Pa]	1584	1586	1601	1612	1438	1905	2206	2097	1689	1625	1602	1588
ps [Pa]	1861	1921	2045	2170	2060	2724	3185	3000	2395	2170	2012	1894
gc [kg/m²]	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0,00000	0.00000	0.00000	0.00000	0.00000
gev[kg/m²]	0,00000	0,00000	0,00000	0.00000	0,00000	0.00000	0,00000	0,00000	0.00000	0,00000	0,00000	0,00000
Ma [kg/m²]	0,00000	0,00000	0,00000	0.00000	0,00000	0,00000	0,00000	0,00000	0.00000	0,00000	0,00000	0,00000
Interfaccia 3(INA0	,	,	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
θ [°C]	17,31	17,68	18,41	19,12	17,99	22,50	25,10	24,10	20,40	19,12	18,22	17,52
pv [Pa]	1590	1593	1606	1615	1439	1905	2209	2097	1688	1626	1606	1594
ps [Pa]	1976	2022	2117	2213	2061	2724	3185	3000	2395	2213	2092	2001
gc [kg/m²]	0,00000	0,00000	0,00000	0.00000	0,00000	0,00000	0,00000	0.00000	0.00000	0.00000	0.00000	0,00000
gev[kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0.00000
Ma [kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0.00000	0.00000
Interfaccia 4(MUR	,	,	0,00000	0,00000	0,00000	0,00000	0,00000	0,0000	0,0000	0,00000	0,0000	0,00000
θ [°C]	18,84	19,00	19,31	19,62	17,99	22,50	25,10	24,10	20,40	19,62	19,23	18,93
pv [Pa]	1629	1629	1631	1633	1443	1908	2228	2100	1679	1634	1631	1629
ps [Pa]	2174	2196	2240	2282	2062	2724	3185	3000	2395	2282	2228	2186
gc [kg/m²]	0,00000	0,00000	0,00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0,00000	0,00000	0,00000
gev[kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
Ma [kg/m²]	0,00000	0,00000	0,00000	0.00000	0,00000	0,00000	0.00000	0,00000	0,00000	0,00000	0,00000	0,00000
ivia [kg/iii-]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000

Codice

PE03 PE in laterizio su testate Descrizione

VERIFICA MASSA SUPERFICIALE E TRASMITTANZA TERMICA PERIODICA

Riferimento normativo Verifica limiti come Zona climatica

Е Località Milano

Irradianza sul piano orizzontale nel mese di massima insolazione estiva Im,s:

277,68 W/m² 290,00 W/m² **No** valore di progetto valore di confronto
Verifica richiesta

Verifica massa superficiale

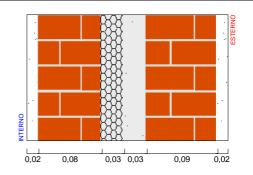
147,682 kg/m² 230,00 kg/m² **Non richiesta** Valore di progetto Valore di confronto **Verifica**

Verifica trasmittanza termica periodica

Risultati di calcolo

	Modulo	Δt
		h
Matrice di trasferimento		
Z11	57,431	-11,92
Z12	18,534 W/(m ² ·K)	-2,39
Z21	19,846 W/(m ² ·K)	1,53
Z22	57,431	-11,92
Ammettenze termiche		
Lato interno	3,099 W/(m ² ·K)	2,47
Lato esterno	0,347 W/(m ² ·K)	1,46
Caratteristiche termiche dinamiche	, ,	
Trasmittanza termica periodica	0,054 W/(m ² ·K)	-9,610
Fattore di decremento	0,224	

Trasmittanza termica periodica

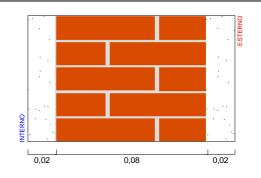

valore di progetto valore di confronto 0,054 W/(m²⋅K) 0,120 W/(m²⋅K) Non richiesta Verifica

PI01 PI laterizio camere/corridoio Divisori camere - corridoio (Laterizio) VI=Verticale interno Da stratigrafia

Codice Descrizione Note Giacitura Origine dei dati

RIEPILOGO

Spessore	m	0,260
Massa superficiale	kg/m²	171,989
Massa totale	kg/m²	213,989
Capacità termica interna	kJ/(m ² ·K)	53,31
Capacità termica esterna	kJ/(m²·K)	53,93
Resistenza termica dei materiali	m²-K/W	1,427
Resistenza termica totale	m²-K/W	1,687
Trasmittanza termica totale	W/(m ² ·K)	0,593
Trasmittanza termica periodica	W/(m ² ·K)	0,261

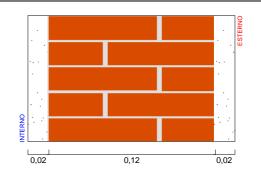


	Codice materiale	Descrizione	d m	λ W/(m⋅K)	C W/(m²·K)	ρ kg/m³	c _p J/(kg⋅K)	R m²-K/W
		Resistenza superficiale interna						0,130
01	INT07	Intonaco di calce e gesso	0,01500	0,700	0,000	1400,000	840	0,021
02	MUR03	Muratura in mattoni (interno)	0,08000	0,355	0,000	1000,000	840	0,225
03	I O95A	ISOFOM KeiFom 28	0,03000	0,038	0,000	65,000	1250	0,789
04	INA05	Intercap. vert. da 40 mm	0,03000	0,260	0,000	1,300	1000	0,115
05	MUR03	Muratura in mattoni (interno)	0,09000	0,355	0,000	1000,000	840	0,254
06	INT07	Intonaco di calce e gesso	0,01500	0,700	0,000	1400,000	840	0,021
		Resistenza superficiale esterna						0,130

Codice Descrizione Note Giacitura Origine dei dati PI02 PI laterizio interno camere 8cm Divisori camere VI=Verticale interno Da stratigrafia

RIEPILOGO

Spessore	m	0,110
Massa superficiale	kg/m²	80,000
Massa totale	kg/m²	122,000
Capacità termica interna	kJ/(m²⋅K)	43,79
Capacità termica esterna	kJ/(m ² ·K)	43,79
Resistenza termica dei materiali	m²-K/W	0,268
Resistenza termica totale	m²-K/W	0,528
Trasmittanza termica totale	W/(m²⋅K)	1,893
Trasmittanza termica periodica	W/(m ² ·K)	1.600

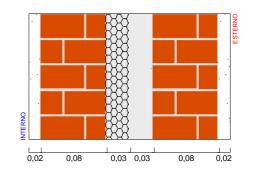


	Codice materiale	Descrizione	d m	λ W/(m·K)	C W/(m²·K)	ρ kg/m³	c _p J/(kg⋅K)	R m²-K/W
		Resistenza superficiale interna						0,130
01	INT07	Intonaco di calce e gesso	0,01500	0,700	0,000	1400,000	840	0,021
02	MUR03	Muratura in mattoni (interno)	0,08000	0,355	0,000	1000,000	840	0,225
03	I T07	Intonaco di calce e gesso	0,01500	0,700	0,000	1400,000	840	0,021
		Resistenza superficiale esterna						0,130

Codice Descrizione Note Giacitura Origine dei dati PI02B PI laterizio interno camere 12cm Divisori camere VI=Verticale interno Da stratigrafia

RIEPILOGO

Spessore	m	0,150
Massa superficiale	kg/m²	120,000
Massa totale	kg/m²	162,000
Capacità termica interna	kJ/(m²⋅K)	50,67
Capacità termica esterna	kJ/(m²⋅K)	50,67
Resistenza termica dei materiali	m²-K/W	0,381
Resistenza termica totale	m²-K/W	0,641
Trasmittanza termica totale	W/(m²⋅K)	1,560
Trasmittanza termica periodica	W/(m²⋅K)	1,128

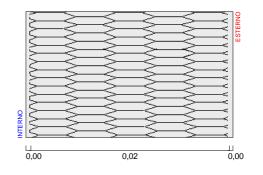

	Codice materiale	Descrizione	d m	λ W/(m·K)	C W/(m²-K)	ρ kg/m³	c _p J/(kg⋅K)	R m²-K/W
		Resist nza superficiale interna						0,130
01	INT07	Intonaco di calce e gesso	0,01500	0,700	0,000	1400,000	840	0,021
02	MUR03	Muratura in mattoni (interno)	0,12000	0,355	0,000	1000,000	840	0,338
03	INT07	Intonaco di calce e gesso	0,01500	0,700	0,000	1400,000	840	0,021
		Resistenza superficiale esterna						0,130

PI03 PI laterizio camere/camere Divisori camere - camere (Laterizio) VI=Verticale interno Da stratigrafia

Codice Descrizione Note Giacitura Origine dei dati

RIEPILOGO

Spessore	m	0,250
Massa superficiale	kg/m²	161,989
Massa totale	kg/m²	203,989
Capacità termica interna	kJ/(m²⋅K)	53,52
Capacità termica esterna	kJ/(m²⋅K)	53,49
Resistenza termica dei materiali	m²-K/W	1,398
Resistenza termica totale	m²-K/W	1,658
Trasmittanza termica totale	W/(m²⋅K)	0,603
Trasmittanza termica periodica	W/(m²⋅K)	0,286

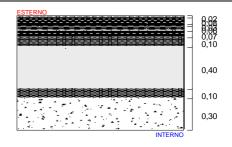


	Codice materiale	Descrizione	d m	λ W/(m·K)	C W/(m²-K)	ρ kg/m³	c _p J/(kg⋅K)	R m²⋅K/W
		Resistenza superficiale interna						0,130
01	INT07	Intonaco di calce e gesso	0,01500	0,700	0,000	1400,000	840	0,021
02	MUR03	Muratura in mattoni (interno)	0,08000	0,355	0,000	1000,000	840	0,225
03	I O95A	ISOFOM KeiFom 28	0,03000	0,038	0,000	65,000	1250	0,789
04	INA05	Intercap. vert. da 40 mm	0,03000	0,260	0,000	1,300	1000	0,115
05	MUR03	Muratura in mattoni (interno)	0,08000	0,355	0,000	1000,000	840	0,225
06	INT07	Intonaco di calce e gesso	0,01500	0,700	0,000	1400,000	840	0,021
		Resistenza superficiale esterna						0,130

Codice Descrizione Note Giacitura Origine dei dati PORT01 Porta esterna Porta esterna in alluminio VE=Verticale esterno Da stratigrafia

RIEPILOGO

Spessore	m	0,021
Massa superficiale	kg/m²	3,500
Massa totale	kg/m²	3,500
Capacità termica interna	kJ/(m²·K)	1,61
Capacità termica esterna	kJ/(m²⋅K)	2,02
Resistenza termica dei materiali	m²-K/W	0,625
Resistenza termica totale	m²⋅K/W	0,795
Trasmittanza termica totale	W/(m²⋅K)	1,258
Trasmittanza termica periodica	W/(m²⋅K)	1,258

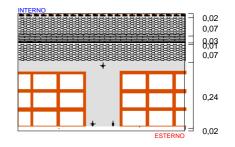


	Codice materiale	Descrizione	d m	λ W/(m·K)	C W/(m²·K)	ρ kg/m³	c _p J/(kg⋅K)	R m²·K/W
		Resistenza superficiale interna						0,130
01	MET04	Alluminio	0,00050	220,000	0,000	2700,000	960	0,000
02	ISO57	Poliuretani in lastre	0,02000	0,032	0,000	40,000	1300	0,625
03	MET04	Alluminio	0,00050	220,000	0,000	2700,000	960	0,000
		Resistenza superficiale esterna						0,040

Codice Descrizione Note Giacitura Origine dei dati SOL01-OR Partizione inf. orizzontale Solaio di calpestio al suolo su igloo PT=Pavimento terreno Da stratigrafia

RIEPILOGO

Spessore	m	1,155
Massa superficiale	kg/m²	1162,520
Massa totale	kg/m²	1162,520
Capacità termica interna	kJ/(m²⋅K)	65,48
Capacità termica esterna	kJ/(m²·K)	153,90
Resistenza termica dei materiali	m²-K/W	3,445
Resistenza termica totale	m²-K/W	3,615
Trasmittanza termica totale	W/(m²·K)	0,277
Trasmittanza termica periodica	W/(m ² ·K)	0,003



	Codice materiale	Descrizione	d m	λ W/(m⋅K)	C W/(m²-K)	ρ kg/m³	c _p J/(kg⋅K)	R m²-K/W
		Resistenza superfici le interna						0,170
01	PAV13	Piastrelle in klinker	0,02000	1,500	0,000	2500,000	840	0,013
02	SOT01	Sottofondo sabbia-cemento	0,07500	1,400	0,000	2000,000	840	0,054
03	ISO47	Polistirene esp. sinterizzato	0,03000	0,042	0,000	30,000	1250	0,714
04	ISO52	Polistirene espanso estruso	0,06000	0,033	0,000	35,000	1250	1,818
05	SOT12	Sott. non aerato di arg. esp.	0,07000	0,360	0,000	700,000	840	0,194
06	SOT18	Massetto in CLS con rete	0,10000	1,490	0,000	2400,000	880	0,067
07	INA25	Inter.orizz. s>200mm (fl disc)	0,40000	0,000	5,232	1,300	1000	0,191
80	SOT16	Sottofondo di cemento magro	0,10000	0,700	0,000	1600,000	880	0,143
09	MSR17	Ghiaia grossa senza argilla	0,30000	1,200	0,000	1700,000	840	0,250
		Resistenza superficiale esterna						0,000

Codice Descrizione Note Giacitura Origine dei dati SOL02 Partizione interpiano Solaio di calpestio interpiano PI=Pavimento interno(flusso discendente) Da stratigrafia

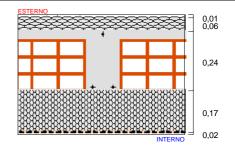
RIEPILOGO

Spessore	m	0,450
Massa superficiale	kg/m²	575,900
Massa totale	kg/m²	596,900
Capacità termica interna	kJ/(m²⋅K)	63,86
Capacità termica esterna	kJ/(m²⋅K)	51,23
Resistenza termica dei materiali	m²-K/W	1,868
Resistenza termica totale	m²-K/W	2,208
Trasmittanza termica totale	W/(m ² ·K)	0,453
Trasmittanza termica periodica	W/(m ² ·K)	0,026

Codice materiale	Descrizione	d	λ	С	ρ	ср	R
		m	W/(m·K)	W/(m²·K)	kg/m³	J/(kg⋅K)	m²-K/W
	Resistenza superficiale interna						0, 70
01 PAV13	Piastrelle in klinker	0,01500	1,500	0,000	2500,000	840	0,010
02 SOT01	Sottofondo sabbia-cemento	0,07000	1,400	0,000	2000,000	840	0,050
03 ISO47	Polistirene esp. sinterizzato	0,03000	0,042	0,000	30,000	1250	0,714
04 ISOA01	Isolante anticalpestio	0,01000	0,035	0,000	30,000	2100	0,286
05 SOT11A	Sottofondo argilla espansa	0,07000	0,144	0,000	600,000	1000	0,486
06 SOL08	Solaio tipo predalles da 24cm	0,24000	0,000	3,333	1480,000	840	0,300
07 INT07	Intonaco di calce e gesso	0,01500	0,700	0,000	1400,000	840	0,021
	Resistenza superficiale esterna						0,170

SOL03

Codice Descrizione Partizione esterna terrazzi Note Solaio di calpestio terrazzi


Giacitura PE=Pavimento esterno(flusso discendente)

Origine dei dati Da stratigrafia

RIEPILOGO

Spessore	m	0,498
Massa superficiale	kg/m²	496,800
Massa totale	kg/m²	506,175
Capacità termica interna	kJ/(m²⋅K)	40,77
Capacità termica esterna	kJ/(m²·K)	11,49
Resistenza termica dei materiali	m²·K/W	3,330
Resistenza termica totale	m²-K/W	3,500
Trasmittanza termica totale	W/(m²·K)	0,286
Trasmittanza termica periodica	W/(m²·K)	0,006

Resistenza superficiale esterna

STRATIGRAFIA Codice materiale Descrizione d Ср m W/(m·K) W/(m²·K) kg/m³ J/(kg·K) m²-K/W Resistenza superficiale inter a Piastrelle in klinker 0,170 0,01500 0,17000 2500,000 600,000 0,000 0,000 01 PAV13 0,010 1,500 840 02 SOT11A Sottofondo argilla espansa 1000 0,144 1,181 Solaio tipo predalles da 24cm 03 SOL08 0,24000 0,000 3,333 1480,000 840 0,300 04 ISO52 Polistirene espanso estruso 0,06000 0,033 0,000 35,000 1250 1,818 05 INT10 Pannello di cartongesso 0,01250 0,600 0,000 750,000 840 0,021

0,000

Partizione esterna terrazzi

VERIFICA IGROMETRICA

Condizioni al contorno

Ambiente confinante

Esterno UNI 10349 - Media mensile Temperatura esterna UNI 10349 - Media mensile UNI EN ISO 13788 N.A. 1.2 No Umidità relativa esterna Temperatura interna Struttura leggera

65 % Umidità relativa Umidità relativa massima accettabile 80 %

	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
θe [°C]	1,70	4,20	9,20	14,00	17,90	22,50	25,10	24,10	20,40	14,00	7,90	3,10
pe [Pa]	590	645	943	1163	1326	1840	1736	2012	1921	1412	958	671
θi [°C]	20,00	20,00	20,00	20,00	18,00	22,50	25,10	24,10	20,40	20,00	20,00	20,00
pi [Pa]	1636	1636	1636	1636	1444	1908	2231	2101	1677	1636	1636	1636

Proprietà dei materiali

Codice Materiale	Descrizione	d	R	μ	sd
		m	m²·K/W		m
	Resistenza superficiale esterna		0,000		
INT10	Pannello di cartongesso	0,01250	0,021	8	0,10000
ISO52	Polistirene espanso estruso	0,06000	1,818	199	11,94000
SOL08	Solaio tipo predalles da 24cm	0,24000	0,300	8	1,92000
SOT11A	Sottofondo argilla espansa	0,17000	1,181	6	1,02000
PAV13	Piastrelle in klinker	0,01500	0,010	300	4,50000
	Resistenza superficiale interna		0,170		

Verifica della temperatura superficiale (UNI EN ISO 13788 §5)

GENNAIO Mese critico Fattore di temperatura, f_{Rsi} 0,931 Fattore di temperatura massimo, f_{Rsi,max} 0,883 La struttura non è soggetta a fenomeni di condensa superficiale. Verifica Positiva

	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
θe [°C]	1,70	4,20	9,20	14,00	17,90	22,50	25,10	24,10	20,40	14,00	7,90	3,10
pe [Pa]	590	645	943	1163	1326	1840	1736	2012	1921	1412	958	671
θi [°C]	20,00	20,00	20,00	20,00	18,00	22,50	25,10	24,10	20,40	20,00	20,00	20,00
p _i [Pa]	1636	1636	1636	1636	1444	1908	2231	2101	1677	1636	1636	1636
p _S [Pa]	2045	2045	2045	2045	1805	2385	2789	2626	2096	2045	2045	2045
θsi,min [°C]	17,86	17,86	17,86	17,86	15,89	20,33	22,89	21,90	18,25	17,86	17,86	17,86
fRsi	0,88	0,87	0,80	0,64	-20,10	0,00	0,00	0,00	0,00	0,64	0,82	0,87
θsi [°C]	18,74	18,91	19,25	19,59	17,99	22,50	25,10	24,10	20,40	19,59	19,16	18,83

Codice Descrizione

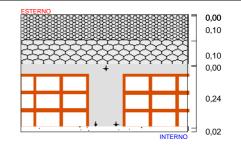
SOL03 Partizione esterna terrazzi

Verifica della condensazione interstiziale (UNI EN ISO 13788 §6)

Non si verifica condensazione in nessuna interfaccia per nessun mese. La struttura non è soggetta a fenomeni di condensa interstiziale. Verifica Positiva

Risultati di calcolo

	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
Esterno												
θ [°C]	1,7	4,2	9,2	14	17,9	22,5	25,1	24,1	20,4	14	7,9	3,1
p _V [Pa]	590	645	943	1163	1326	1840	1736	2012	1921	1412	958	671
ps [Pa]	700	835	1172	1605	2050	2724	3185	3000	2395	1605	1075	773
Superficie esterna												
θ [°C]	1,90	4,37	9,32	14,07	17,90	22,50	25,10	24,10	20,40	14,07	8,03	3,29
p _V [Pa]	590	645	943	1163	1326	1840	1736	2012	1921	1412	958	671
ps [Pa]	700	835	1172	1605	2050	2724	3185	3000	2395	1605	1075	773
g _C [kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
gev[kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
Ma [kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
Interfaccia 1(INT1		4 47	0.00	4440	47.00	00.50	05.40	04.40	00.40	4440	0.40	0.00
θ [°C]	2,01	4,47	9,38	14,10	17,90	22,50	25,10	24,10	20,40	14,10	8,10	3,38
pv [Pa] ps [Pa]	595 706	650 840	947 1177	1165 1608	1327 2050	1840 2724	1739 3185	2012 3000	1920 2395	1413 1608	961 1080	676 778
ps [Fa] gc [kg/m²]	0.00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0.00000	0.00000	0.00000	0,00000	0.00000
gev[kg/m²]	0,00000	0,00000	0,00000	0,00000	0.00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
Ma [kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
Interfaccia 2(ISO5	,	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,0000	0,0000	0,00000	0,0000	0,00000
θ [°C]	11,20	12,40	14,81	17,11	17,95	22,50	25,10	24,10	20,40	17,11	14,18	11,87
pv [Pa]	1237	1258	1371	1455	1399	1882	2042	2067	1770	1550	1377	1267
ps [Pa]	1329	1439	1683	1951	2057	2724	3185	3000	2395	1951	1617	1390
gc [kg/m²]	0.00000	0.00000	0.00000	0.00000	0,00000	0.00000	0.00000	0,00000	0.00000	0.00000	0.00000	0.00000
gev[kg/m²]	0,00000	0,00000	0,00000	0.00000	0,00000	0.00000	0,00000	0,00000	0.00000	0.00000	0,00000	0,00000
Ma [kg/m²]	0,00000	0,00000	0,00000	0.00000	0,00000	0,00000	0,00000	0,00000	0.00000	0,00000	0,00000	0,00000
Interfaccia 3(SOL)	,	,	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
θ [°C]	12,72	13,71	15,70	17,61	17,96	22,50	25,10	24,10	20,40	17,61	15,18	13,27
pv [Pa]	1340	1355	1440	1502	1411	1889	2091	2076	1746	1573	1444	1363
ps [Pa]	1469	1568	1783	2013	2058	2724	3185	3000	2395	2013	1725	1524
gc [kg/m²]	0,00000	0.00000	0.00000	0.00000	0,00000	0,00000	0.00000	0,00000	0.00000	0,00000	0.00000	0.00000
gev[kg/m²]	0,00000	0,00000	0,00000	0.00000	0,00000	0.00000	0,00000	0,00000	0.00000	0.00000	0,00000	0,00000
Ma [kg/m²]	0,00000	0,00000	0,00000	0.00000	0,00000	0.00000	0,00000	0,00000	0.00000	0.00000	0.00000	0,00000
Interfaccia 4(SOT	,	,	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
θ [°C]	18,69	18,87	19,22	19,57	17,99	22,50	25,10	24,10	20,40	19,57	19,13	18,79
pv [Pa]	1394	1407	1476	1527	1417	1892	2117	2080	1733	1584	1479	1413
	2153	2178	2227	2275	2062	2724	3185	3000	2395	2275	2214	2167
ps [Pa] gc [kg/m²]	0,00000	0,00000	0,00000	0.00000	0,00000	0.00000	0,00000	0.00000	0.00000	0.00000	0,00000	0,00000
	0,00000	,	,	0,00000	0,00000	0,00000	0,00000		,	,	0,00000	,
gev[kg/m²]	0,00000	0,00000	0,00000	0.00000		0,00000	0.00000	0,00000	0,00000	0,00000	0,00000	0,00000 0,00000
Ma [kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000


COMPONENTE OPACO

Codice Descrizione Note Giacitura SOL04 Chiusura superiore orizzontale Solaio esterno di copertura SE=Solaio esterno(flusso ascendente)

Origine dei dati Da stratigrafia

RIEPILOGO

Spessore	m	0,471
Massa superficiale	kg/m²	571,500
Massa totale	kg/m²	599,500
Capacità termica interna	kJ/(m²⋅K)	67,91
Capacità termica esterna	kJ/(m²·K)	103,49
Resistenza termica dei materiali	m²-K/W	3,488
Resistenza termica totale	m²-K/W	3,628
Trasmittanza termica totale	W/(m²·K)	0,276
Trasmittanza termica periodica	W/(m ² ·K)	0,029

STRATIGRAFIA

	Codice materiale	Descrizione	d m	λ W/(m·K)	C W/(m²·K)	ρ kg/m³	c _p J/(kg⋅K)	R m²-K/W
		Resistenza superficiale interna		***(**)	- (/	<u> </u>	o/(itg it/	0,100
01	INT07	Intonaco di calce e gesso	0,02000	0,700	0,000	1400,000	840	0,029
02	SOL08	Solaio tipo predalles da 24cm	0,24000	0,000	3,333	1480,000	840	0,300
03	B A17	Guaina con lamina di alluminio	0,00200	0,170	0,000	1000,000	920	0,012
04	ISO52	Polistirene espanso estruso	0,10000	0,033	0,000	35,000	1250	3,030
05	SOT01	Sottofondo sabbia-cemento	0,10000	1,400	0,000	2000,000	840	0,071
06	IMP14	Guaina bitume-polimero	0,00450	0,170	0,000	1200,000	920	0,026
07	IMP09	Guaina con finit. in ardesia	0,00450	0,230	0,000	1200,000	920	0,020
		Resistenza superficiale esterna						0,040

VERIFICA DI TRASMITTANZA TERMICA

Riferimento normativo Verifica limiti come Zona climatica
Trasmittanza limite
Trasmittanza termica
Verifica

E 0,34 W/(m²·K) 0,276 W/(m²·K) Positiva

Codice Descrizione SOL04

Chiusura superiore orizzontale

VERIFICA IGROMETRICA

Condizioni al contorno

Ambiente confinante

UNI 10349 - Media mensile Temperatura esterna UNI 10349 - Media mensile UNI EN ISO 13788 N.A. 1.2 No Umidità relativa esterna Temperatura interna

Esterno

Struttura leggera 65 % Umidità relativa Umidità relativa massima accettabile 80 %

	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
θe [°C]	1,70	4,20	9,20	14,00	17,90	22,50	25,10	24,10	20,40	14,00	7,90	3,10
pe [Pa]	590	645	943	1163	1326	1840	1736	2012	1921	1412	958	671
θi [°C]	20,00	20,00	20,00	20,00	18,00	22,50	25,10	24,10	20,40	20,00	20,00	20,00
pi [Pa]	1636	1636	1636	1636	1444	1908	2231	2101	1677	1636	1636	1636

Proprietà dei materiali

Codice Materiale	Descrizione	d	R	μ	sd
		m	m²∙K/W		m
	Resistenza superficiale esterna		0,040		
IMP09	Guaina con finit. in ardesia	0,00450	0,020	20000	90,00000
IMP14	Guaina bitume-polimero	0,00450	0,026	40000	180,00000
SOT01	Sottofondo sabbia-cemento	0,10000	0,071	22	2,20000
ISO52	Polistirene espanso estruso	0,10000	3,030	199	19,90000
BVA17	Guaina con lamina di alluminio	0,00200	0,012	999999	1999,99800
SOL08	Solaio tipo predalles da 24cm	0,24000	0,300	8	1,92000
INT07	Intonaco di calce e gesso	0,02000	0,029	10	0,20000
	Resistenza superficiale interna		0,100		

Verifica della temperatura superficiale (UNI EN ISO 13788 §5)

Mese critico GENNAIO Fattore di temperatura, fRsi 0,934 Fattore di temperatura massimo, fRsi,max 0,883 La struttura non è soggetta a fenomeni di condensa superficiale. Positiva

Risultati di calcolo

	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
θe [°C]	1,70	4,20	9,20	14,00	17,90	22,50	25,10	24,10	20,40	14,00	7,90	3,10
pe [Pa]	590	645	943	1163	1326	1840	1736	2012	1921	1412	958	671
θi [°C]	20,00	20,00	20,00	20,00	18,00	22,50	25,10	24,10	20,40	20,00	20,00	20,00
pi [Pa]	1636	1636	1636	1636	1444	1908	2231	2101	1677	1636	1636	1636
p _S [Pa]	2045	2045	2045	2045	1805	2385	2789	2626	2096	2045	2045	2045
θsi,min [°C]	17,86	17,86	17,86	17,86	15,89	20,33	22,89	21,90	18,25	17,86	17,86	17,86
fRsi	0,88	0,87	0,80	0,64	-20,10	0,00	0,00	0,00	0,00	0,64	0,82	0,87
θsi [°C]	18,79	18,95	19,29	19,60	17,99	22,50	25,10	24,10	20,40	19,60	19,20	18,88

Codice Descrizione

SOL04 Chiusura superiore orizzontale

Verifica della condensazione interstiziale (UNI EN ISO 13788 §6)

Non si verifica condensazione in nessuna interfaccia per nessun mese. La struttura non è soggetta a fenomeni di condensa interstiziale. Verifica Positiva

Risultati di calcolo

	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
Esterno												
θ [°C]	1,7	4,2	9,2	14	17,9	22,5	25,1	24,1	20,4	14	7,9	3,1
p _V [Pa]	590	645	943	1163	1326	1840	1736	2012	1921	1412	958	671
ps [Pa]	700	834	1172	1604	2050	2724	3185	3000	2395	1604	1074	773
Superficie esterna												
θ ['] [°C]	1,89	4,37	9,31	14,06	17,90	22,50	25,10	24,10	20,40	14,06	8,03	3,28
p _v [Pa]	590	645	943	1163	1326	1840	1736	2012	1921	1412	958	671
ps [Pa]	700	834	1172	1604	2050	2724	3185	3000	2395	1604	1074	773
gc [kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
gev[kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
Ma [kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
Interfaccia 1(IMP0	9 - IMP14)											
θ [°C]	1,99	4,45	9,37	14,10	17,90	22,50	25,10	24,10	20,40	14,10	8,09	3,37
pv [Pa]	631	684	970	1182	1331	1843	1755	2015	1911	1421	985	709
ps [Pa]	705	839	1177	1608	2050	2724	3185	3000	2395	1608	1079	777
gc [kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
gev[kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
Ma [kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
Interfaccia 2(IMP1	,											
θ [°C]	2,12	4,56	9,45	14,14	17,90	22,50	25,10	24,10	20,40	14,14	8,18	3,48
pv [Pa]	711	762	1025	1219	1340	1848	1794	2022	1892	1438	1038	784
ps [Pa]	711	845	1182	1612	2050	2724	3185	3000	2395	1612	1085	784
gc [kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
gev[kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
Ma [kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
Interfaccia 3(SOT)	1 - ISO52)											
θ [°C]	2,46	4,86	9,65	14,25	17,90	22,50	25,10	24,10	20,40	14,25	8,40	3,80
pv [Pa]	714	763	1025	1219	1340	1848	1795	2023	1892	1439	1038	785
ps [Pa]	729	863	1199	1624	2050	2724	3185	3000	2395	1624	1102	802
gc [kg/m²]	0.00000	0,00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0,00000	0.00000	0.00000	0,00000
gev[kg/m²]	0,00000	0,00000	0.00000	0.00000	0,00000	0.00000	0.00000	0.00000	0,00000	0,00000	0,00000	0,00000
Ma [kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
Interfaccia 4(ISO5)		0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
θ [°C]	17,14	17,53	18,31	19,06	17,98	22,50	25,10	24,10	20,40	19,06	18,11	17,36
	723	771	10,31	1223	1341	1849	1799	2023	1890	1441	10,11	794
pv [Pa]	1954	2002	2103	2205	2061	2724	3185	3000	2395	2205	2077	1981
ps [Pa]												
gc [kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
gev[kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
Ma [kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
Interfaccia 5(BVA1	,									40.00		
θ [°C]	17,20	17,58	18,34	19,08	17,98	22,50	25,10	24,10	20,40	19,08	18,15	17,41
pv [Pa]	1635	1635	1635	1636	1444	1908	2231	2101	1677	1636	1635	1635
ps [Pa]	1961	2009	2108	2207	2061	2724	3185	3000	2395	2207	2082	1988
gc [kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
gev[kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
Ma [kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
Interfaccia 6(SOL0	8 - INT07)											
θ [°C]	18,65	18,83	19,20	19,56	17,99	22,50	25,10	24,10	20,40	19,56	19,11	18,75
pv [Pa]	1636	1636	1636	1636	1444	1908	2231	2101	1677	1636	1636	1636
ps [Pa]	2148	2173	2224	2274	2062	2724	3185	3000	2395	2274	2211	2162
gc [kg/m²]	0.00000	0,00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0,00000	0.00000	0.00000	0.00000
gev[kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
Ma [kg/m²]	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0.00000	0,00000	0,00000
ma [ng/m]	3,00000	3,00000	3,00000	3,00000	3,00000	3,00000	3,00000	3,00000	5,00000	3,00000	3,00000	5,00000

Codice SOL04

Descrizione Chiusura superiore orizzontale

VERIFICA MASSA SUPERFICIALE E TRASMITTANZA TERMICA PERIODICA

Riferimento normativo Verifica limiti come Zona climatica

Zona climatica E Località Milano

Irradianza sul piano orizzontale nel mese di massima insolazione estiva Im,s:

valore di progetto
valore di confronto

Verifica richiesta

valore di confronto
290,00 W/m²

No

Verifica massa superficiale

 $\begin{array}{lll} \mbox{Valore di progetto} & 571,500 \ \mbox{kg/m}^2 \\ \mbox{Valore di confronto} & 230,00 \ \mbox{kg/m}^2 \\ \mbox{Verifica} & \mbox{Non richiesta} \end{array}$

Verifica trasmittanza termica periodica

Risultati di calcolo

	Modulo	Δt
		h
Matrice di trasferimento		
Z11	170,574	-8,88
Z12	34,679 W/(m ² ⋅K)	1,59
Z21	1281,332 W/(m²⋅K)	5,59
Z22	170,574	-8,88
Ammettenze termiche		
Lato interno	4,919 W/(m ² ·K)	1,53
Lato esterno	7,512 W/(m ² ·K)	2,46
Caratteristiche termiche dinamiche		
Trasmittanza termica periodica	0,029 W/(m ² ·K)	-13,590
Fattore di decremento	0,105	

Trasmittanza termica periodica

valore di progetto
valore di confronto

valore di confronto

0,029 W/(m²-K)
0,120 W/(m²-K)

Verifica

Non richiesta

Codice Descrizione FIN01

Finestra 3,40x2,70

Note Finestra esterna in metallo con vetrocamera

Tipo di serramento Finestra singola

Origine dei dati Procedura analitica (UNI EN ISO 10077-1:2007)

Serramento	Ag	Af	Ap	Lg	Ug	Uf	Up	Ψg	Uw
Singolo	8 150	1.030	0.000	16 640	1 100	1 600	0.000	0.080	1.301

Dati apporti solari:

Emissività 0,84 ε Trasmittanza solare g gl,n 0,30

RISULTATI

m²·K/W W/(m²·K) Resistenza 0,769 1,301 Trasmittanza termica Resistenza termica aggiuntiva m²-K/W 0,000 Trasmittanza totale W/(m2-K) 1,301

VERIFICA IGROMETRICA

Condizioni al contorno

Ambiente confinante Esterno

Temperatura esterna UNI 10349 - Media mensile Umidità relativa esterna UNI 10349 - Media mensile Temperatura interna UNI EN ISO 13788 N.A. 1.2

Struttura leggera Si Umidità relativa 65 % Media delle temperature esterne minime annuali 6,5 °C

	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
θe [°C]	1,70	4,20	9,20	14,00	17,90	22,50	25,10	24,10	20,40	14,00	7,90	3,10
pe [Pa]	590	645	943	1163	1326	1840	1736	2012	1921	1412	958	671
θi [°C]	20,00	20,00	20,00	20,00	20,00	22,50	25,10	24,10	20,40	20,00	20,00	20,00
p _i [Pa]	1636	1636	1636	1636	1636	1908	2231	2101	1677	1636	1636	1636

Verifica della temperatura superficiale (UNI EN ISO 13788 §5)

Mese critico

Fattore di temperatura, f_{Rsi} 0,862 Fattore di temperatura massimo, fRsi,max 0,583 La struttura non è soggetta a fenomeni di condensa superficiale. Positiva

Risultati di calcolo

θe [°C] 6,50 pe [Pa] 919 θ_i [°C] 20,00 p_i [Pa] 1636 ps [Pa] 1636 14,37 θsi,min [°C] 0.58 fRsi θ_{Si} [°C] 18,13

Codice Descrizione FIN02

Finestra 2,1x2,1

Note Finestra esterna in metallo con vetrocamera

Tipo di serramento Finestra singola

Origine dei dati Procedura analitica (UNI EN ISO 10077-1:2007)

Serramento	Ag	Af	Ap	Lg	Ug	Uf	Up	Ψg	Uw
Singolo	3.680	0.730	0.000	11 640	1 100	1 600	0.000	0.080	1 394

Dati apporti solari:

Emissività 0,84 ε Trasmittanza solare g gl,n 0,30

RISULTATI

Resistenza $m^2 \cdot K/W$ 0,717 W/(m²·K) m²·K/W Trasmittanza termica 1,394 0,000 Resistenza termica aggiuntiva Trasmittanza totale W/(m2·K) 1,394

VERIFICA IGROMETRICA

Condizioni al contorno

Ambiente confinante Esterno

Temperatura esterna UNI 10349 - Media mensile Umidità relativa esterna UNI 10349 - Media mensile Temperatura interna UNI EN ISO 13788 N.A. 1.2 Struttura leggera

Umidità relativa 65 % Media delle temperature esterne minime annuali 6,5 °C

	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
θe [°C]	1,70	4,20	9,20	14,00	17,90	22,50	25,10	24,10	20,40	14,00	7,90	3,10
pe [Pa]	590	645	943	1163	1326	1840	1736	2012	1921	1412	958	671
θi [°C]	20,00	20,00	20,00	20,00	20,00	22,50	25,10	24,10	20,40	20,00	20,00	20,00
pi [Pa]	1636	1636	1636	1636	1636	1908	2231	2101	1677	1636	1636	1636

Verifica della temperatura superficiale (UNI EN ISO 13788 §5)

Mese critico

Fattore di temperatura, f_{Rsi} 0,853 Fattore di temperatura massimo, fRsi,max 0,583 La struttura non è soggetta a fenomeni di condensa superficiale. Verifica Positiva

Risultati di calcolo

FIN03

Codice Descrizione Finestra 2,6x2,6

Note Finestra esterna in metallo con vetrocamera

Tipo di serramento Finestra singola

Origine dei dati Procedura analitica (UNI EN ISO 10077-1:2007)

Serramento	Ag	Af	Ap	Lg	Ug	Uf	Up	Ψg	Uw
Singolo	5.850	0.910	0.000	14 640	1 100	1 600	0.000	0.080	1 341

Dati apporti solari:

Emissività 0,84 ε Trasmittanza solare g gl,n 0,30

RISULTATI

Resistenza $m^2 \cdot K/W$ 0,746 W/(m²·K) m²·K/W Trasmittanza termica 1,341 0,000 Resistenza termica aggiuntiva Trasmittanza totale W/(m2·K) 1,341

VERIFICA IGROMETRICA

Condizioni al contorno

Ambiente confinante Esterno

Temperatura esterna UNI 10349 - Media mensile Umidità relativa esterna UNI 10349 - Media mensile Temperatura interna UNI EN ISO 13788 N.A. 1.2

Struttura leggera Umidità relativa 65 % Media delle temperature esterne minime annuali 6,5 °C

	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
θe [°C]	1,70	4,20	9,20	14,00	17,90	22,50	25,10	24,10	20,40	14,00	7,90	3,10
pe [Pa]	590	645	943	1163	1326	1840	1736	2012	1921	1412	958	671
θi [°C]	20,00	20,00	20,00	20,00	20,00	22,50	25,10	24,10	20,40	20,00	20,00	20,00
pi [Pa]	1636	1636	1636	1636	1636	1908	2231	2101	1677	1636	1636	1636

Verifica della temperatura superficiale (UNI EN ISO 13788 §5)

Mese critico

Fattore di temperatura, f_{Rsi} 0,858 Fattore di temperatura massimo, fRsi,max 0,583 La struttura non è soggetta a fenomeni di condensa superficiale. Verifica Positiva

Risultati di calcolo

Codice Descrizione FIN04

Finestra 2,6x2,9

Note Finestra esterna in metallo con vetrocamera

Tipo di serramento Finestra singola

Origine dei dati Procedura analitica (UNI EN ISO 10077-1:2007)

Serramento	Ag	Af	Ap	Lg	Ug	Uf	Up	Ψg	Uw
Singolo	6,560	0,980	0,000	15,840	1,100	1,600	0,000	0,080	1,333

RISULTATI

m²-K/W Resistenza 0,750 W/(m²·K) m²·K/W Trasmittanza termica 1,333 Resistenza termica aggiuntiva Trasmittanza totale 0,000 W/(m²·K) 1,333

Dati apporti solari:

Emissività 0,84 ε Trasmittanza solare 0,30 g gl,n

VERIFICA IGROMETRICA

Condizioni al contorno

Ambiente confinante Esterno

Temperatura esterna UNI 10349 - Media mensile Umidità relativa esterna UNI 10349 - Media mensile Temperatura interna UNI EN ISO 13788 N.A. 1.2

Struttura leggera Umidità relativa 65 % Media delle temperature esterne minime annuali 6,5 °C

	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
θe [°C]	1,70	4,20	9,20	14,00	17,90	22,50	25,10	24,10	20,40	14,00	7,90	3,10
pe [Pa]	590	645	943	1163	1326	1840	1736	2012	1921	1412	958	671
θi [°C]	20,00	20,00	20,00	20,00	20,00	22,50	25,10	24,10	20,40	20,00	20,00	20,00
pi [Pa]	1636	1636	1636	1636	1636	1908	2231	2101	1677	1636	1636	1636

Verifica della temperatura superficiale (UNI EN ISO 13788 §5)

Mese critico

Fattore di temperatura, f_{Rsi} 0,859 Fattore di temperatura massimo, fRsi,max 0,583 La struttura non è soggetta a fenomeni di condensa superficiale. Verifica Positiva

Risultati di calcolo

θe [°C] 6,50 pe [Pa] 919 20,00 $\theta i \ [^{\circ}C]$ pi [Pa] 1636 ps [Pa] 1636 $\theta_{\text{Si,min}}\,[^{\circ}\text{C}]$ 14,37 fRsi 0,58 θsi [°C] 18,09

Codice Descrizione FIN05

Finestra 0,3x0,3

Note Finestra esterna metallica con vetrocamera

Tipo di serramento Finestra singola

Origine dei dati Procedura analitica (UNI EN ISO 10077-1:2007)

Serramento	Ag	Af	Ap	Lg	Ug	Uf	Up	Ψg	Uw
Singolo	0.030	0.060	0.000	0.720	1 100	1 600	0.000	0.080	2 073

Dati apporti solari:

Emissività 0,84 ε Trasmittanza solare g gl,n 0,30

RISULTATI

Resistenza $m^2 \cdot K/W$ 0,482 W/(m²·K) m²·K/W Trasmittanza termica 2,073 0,000 Resistenza termica aggiuntiva Trasmittanza totale W/(m2·K) 2,073

VERIFICA IGROMETRICA

Condizioni al contorno

Ambiente confinante Esterno

Temperatura esterna UNI 10349 - Media mensile Umidità relativa esterna UNI 10349 - Media mensile Temperatura interna UNI EN ISO 13788 N.A. 1.2

Struttura leggera Umidità relativa 65 % Media delle temperature esterne minime annuali 6,5 °C

	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
θe [°C]	1,70	4,20	9,20	14,00	17,90	22,50	25,10	24,10	20,40	14,00	7,90	3,10
pe [Pa]	590	645	943	1163	1326	1840	1736	2012	1921	1412	958	671
θi [°C]	20,00	20,00	20,00	20,00	20,00	22,50	25,10	24,10	20,40	20,00	20,00	20,00
pi [Pa]	1636	1636	1636	1636	1636	1908	2231	2101	1677	1636	1636	1636

Verifica della temperatura superficiale (UNI EN ISO 13788 §5)

Mese critico

Fattore di temperatura, f_{Rsi} 0,801 Fattore di temperatura massimo, fRsi,max 0,583 La struttura non è soggetta a fenomeni di condensa superficiale. Verifica Positiva

Risultati di calcolo

FIN06

Codice Descrizione finestra 0,45x0,45

Note Finestra esterna metallica con vetrocamera

Tipo di serramento Finestra singola

Origine dei dati Procedura analitica (UNI EN ISO 10077-1:2007)

Serramento	Ag	Af	Ap	Lg	Ug	Uf	Up	Ψg	Uw
Singolo	0,110	0,090	0,000	1,320	1,100	1,600	0.000	0.080	1,853

Dati apporti solari:

Emissività 0,84 3 Trasmittanza solare g gl,n 0,30

RISULTATI

Resistenza $m^2 \cdot K/W$ 0,540 W/(m²·K) m²·K/W 1,853 0,000 Trasmittanza termica Resistenza termica aggiuntiva Trasmittanza totale W/(m2·K) 1,853

VERIFICA IGROMETRICA

Condizioni al contorno

Ambiente confinante Esterno

Temperatura esterna UNI 10349 - Media mensile Umidità relativa esterna UNI 10349 - Media mensile Temperatura interna UNI EN ISO 13788 N.A. 1.2 Struttura leggera

Umidità relativa 65 % Media delle temperature esterne minime annuali 6,5 °C

	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
θe [°C]	1,70	4,20	9,20	14,00	17,90	22,50	25,10	24,10	20,40	14,00	7,90	3,10
pe [Pa]	590	645	943	1163	1326	1840	1736	2012	1921	1412	958	671
θi [°C]	20,00	20,00	20,00	20,00	20,00	22,50	25,10	24,10	20,40	20,00	20,00	20,00
pi [Pa]	1636	1636	1636	1636	1636	1908	2231	2101	1677	1636	1636	1636

Verifica della temperatura superficiale (UNI EN ISO 13788 §5)

Mese critico

Fattore di temperatura, f_{Rsi} 0,817 Fattore di temperatura massimo, fRsi,max 0,583 La struttura non è soggetta a fenomeni di condensa superficiale. Verifica Positiva

Risultati di calcolo

Codice Descrizione FIN07

finestra 0,6x0,6

Note Finestra esterna metallica con vetrocamera

Tipo di serramento Finestra singola

Origine dei dati Procedura analitica (UNI EN ISO 10077-1:2007)

Serramento	Ag	Af	Ap	Lg	Ug	Uf	Up	Ψg	Uw
Singolo	0.230	0.130	0.000	1.920	1.100	1.600	0.000	0.080	1.707

Dati apporti solari:

Emissività 0,84 3 Trasmittanza solare g gl,n 0,30

RISULTATI

Resistenza $m^2 \cdot K/W$ 0,586 W/(m²·K) m²·K/W 1,707 0,000 Trasmittanza termica Resistenza termica aggiuntiva Trasmittanza totale W/(m2·K) 1,707

VERIFICA IGROMETRICA

Condizioni al contorno

Ambiente confinante Esterno

Temperatura esterna UNI 10349 - Media mensile Umidità relativa esterna UNI 10349 - Media mensile Temperatura interna UNI EN ISO 13788 N.A. 1.2

Struttura leggera Umidità relativa 65 % Media delle temperature esterne minime annuali 6,5 °C

	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
θe [°C]	1,70	4,20	9,20	14,00	17,90	22,50	25,10	24,10	20,40	14,00	7,90	3,10
pe [Pa]	590	645	943	1163	1326	1840	1736	2012	1921	1412	958	671
θi [°C]	20,00	20,00	20,00	20,00	20,00	22,50	25,10	24,10	20,40	20,00	20,00	20,00
pi [Pa]	1636	1636	1636	1636	1636	1908	2231	2101	1677	1636	1636	1636

Verifica della temperatura superficiale (UNI EN ISO 13788 §5)

Mese critico

Fattore di temperatura, f_{Rsi} 0,828 Fattore di temperatura massimo, fRsi,max 0,583 La struttura non è soggetta a fenomeni di condensa superficiale. Verifica Positiva

Risultati di calcolo

FIN08

Codice Descrizione finestra 0,75x0,75

Note Finestra esterna metallica con vetrocamera

Tipo di serramento Finestra singola

Origine dei dati Procedura analitica (UNI EN ISO 10077-1:2007)

Serramento	Ag	Af	Ap	Lg	Ug	Uf	Up	Ψg	Uw
Singolo	0.400	0.170	0.000	2.520	1.100	1.600	0.000	0.080	1.603

Dati apporti solari:

Emissività 0,84 3 Trasmittanza solare g gl,n 0,30

RISULTATI

Resistenza $m^2 \cdot K/W$ 0,624 W/(m²·K) m²·K/W 1,603 0,000 Trasmittanza termica Resistenza termica aggiuntiva 1,603 Trasmittanza totale W/(m2·K)

VERIFICA IGROMETRICA

Condizioni al contorno

Ambiente confinante Esterno

Temperatura esterna UNI 10349 - Media mensile Umidità relativa esterna UNI 10349 - Media mensile Temperatura interna UNI EN ISO 13788 N.A. 1.2

Struttura leggera Umidità relativa 65 % Media delle temperature esterne minime annuali 6,5 °C

	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
θe [°C]	1,70	4,20	9,20	14,00	17,90	22,50	25,10	24,10	20,40	14,00	7,90	3,10
pe [Pa]	590	645	943	1163	1326	1840	1736	2012	1921	1412	958	671
θi [°C]	20,00	20,00	20,00	20,00	20,00	22,50	25,10	24,10	20,40	20,00	20,00	20,00
pi [Pa]	1636	1636	1636	1636	1636	1908	2231	2101	1677	1636	1636	1636

Verifica della temperatura superficiale (UNI EN ISO 13788 §5)

Mese critico

Fattore di temperatura, f_{Rsi} 0,836 Fattore di temperatura massimo, fRsi,max 0,583 La struttura non è soggetta a fenomeni di condensa superficiale. Verifica Positiva

Risultati di calcolo

Codice FIN09
Descrizione finestra 0,9x0,9

Note Finestra esterna metallica con vetrocamera

Tipo di serramento Finestra singola

Origine dei dati Procedura analitica (UNI EN ISO 10077-1:2007)

Serramento	Ag	Af	Ap	Lg	Ug	Uf	Up	Ψg	Uw
Singolo	0.610	0.200	0.000	3.120	1.100	1.600	0.000	0.080	1.532

Dati apporti solari:

Emissività $\epsilon \qquad \qquad 0,84 \\ \text{Trasmittanza solare} \qquad \qquad g \; \text{gl,n} \qquad 0,30 \\$

RISULTATI

VERIFICA IGROMETRICA

Condizioni al contorno

Ambiente confinante Esterno

Temperatura esterna UNI 10349 - Media mensile Umidità relativa esterna UNI 10349 - Media mensile UNI 10349 - Media mensile Temperatura interna UNI EN ISO 13788 N.A. 1.2 Struttura leggera Si

Umidità relativa 65 %
Media delle temperature esterne minime annuali 6,5 °C

	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
θe [°C]	1,70	4,20	9,20	14,00	17,90	22,50	25,10	24,10	20,40	14,00	7,90	3,10
pe [Pa]	590	645	943	1163	1326	1840	1736	2012	1921	1412	958	671
θi [°C]	20,00	20,00	20,00	20,00	20,00	22,50	25,10	24,10	20,40	20,00	20,00	20,00
pi [Pa]	1636	1636	1636	1636	1636	1908	2231	2101	1677	1636	1636	1636

Verifica della temperatura superficiale (UNI EN ISO 13788 §5)

Mese critico -

Fattore di temperatura, f_{Rsi} 0,842 Fattore di temperatura massimo, f_{Rsi,max} 0,583 La struttura non è soggetta a fenomeni di condensa superficiale. **Verifica Positiva**

Risultati di calcolo

Codice Descrizione FIN10

finestra 1,2x1,2

Note Finestra esterna metallica con vetrocamera

Tipo di serramento Finestra singola

Origine dei dati Procedura analitica (UNI EN ISO 10077-1:2007)

Serramento	Ag	Af	Ap	Lg	Ug	Uf	Up	Ψg	Uw
Singolo	1 170	0.270	0.000	4.320	1 100	1 600	0.000	0.080	1 434

Dati apporti solari:

Emissività 0,84 ε Trasmittanza solare g gl,n 0,30

RISULTATI

Resistenza $m^2 \cdot K/W$ 0,697 W/(m²·K) m²·K/W Trasmittanza termica 1,434 0,000 Resistenza termica aggiuntiva Trasmittanza totale W/(m2·K) 1,434

VERIFICA IGROMETRICA

Condizioni al contorno

Ambiente confinante Esterno

Temperatura esterna UNI 10349 - Media mensile Umidità relativa esterna UNI 10349 - Media mensile Temperatura interna UNI EN ISO 13788 N.A. 1.2

Struttura leggera Umidità relativa 65 % Media delle temperature esterne minime annuali 6,5 °C

	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
θe [°C]	1,70	4,20	9,20	14,00	17,90	22,50	25,10	24,10	20,40	14,00	7,90	3,10
pe [Pa]	590	645	943	1163	1326	1840	1736	2012	1921	1412	958	671
θi [°C]	20,00	20,00	20,00	20,00	20,00	22,50	25,10	24,10	20,40	20,00	20,00	20,00
pi [Pa]	1636	1636	1636	1636	1636	1908	2231	2101	1677	1636	1636	1636

Verifica della temperatura superficiale (UNI EN ISO 13788 §5)

Mese critico

Fattore di temperatura, f_{Rsi} 0,850 Fattore di temperatura massimo, fRsi,max 0,583 La struttura non è soggetta a fenomeni di condensa superficiale. Verifica Positiva

Risultati di calcolo

Codice FIN11
Descrizione finestra 1,5x1,5

Note Finestra esterna metallica con vetrocamera

Tipo di serramento Finestra singola

Origine dei dati Procedura analitica (UNI EN ISO 10077-1:2007)

Serramento	Ag	Af	Ap	Lg	Ug	Uf	Up	Ψg	Uw
Singolo	1 900	0.350	0.000	5 520	1 100	1 600	0.000	0.080	1 374

Dati apporti solari:

Emissività $\epsilon \qquad \qquad 0,84 \\ \text{Trasmittanza solare} \qquad \qquad g \; \text{gl,n} \qquad 0,30 \\$

RISULTATI

VERIFICA IGROMETRICA

Condizioni al contorno

Ambiente confinante Esterno

Temperatura esterna UNI 10349 - Media mensile Umidità relativa esterna UNI 10349 - Media mensile Umidità relativa esterna UNI 10349 - Media mensile Temperatura interna UNI EN ISO 13788 N.A. 1.2

Struttura leggera Si Umidità relativa 65 % Media delle temperature esterne minime annuali 6,5 °C

	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
θe [°C]	1,70	4,20	9,20	14,00	17,90	22,50	25,10	24,10	20,40	14,00	7,90	3,10
pe [Pa]	590	645	943	1163	1326	1840	1736	2012	1921	1412	958	671
θi [°C]	20,00	20,00	20,00	20,00	20,00	22,50	25,10	24,10	20,40	20,00	20,00	20,00
pi [Pa]	1636	1636	1636	1636	1636	1908	2231	2101	1677	1636	1636	1636

Verifica della temperatura superficiale (UNI EN ISO 13788 §5)

Mese critico -

Fattore di temperatura, f_{Rsi} 0,855 Fattore di temperatura massimo, f_{Rsi,max} 0,583 La struttura non è soggetta a fenomeni di condensa superficiale. **Verifica Positiva**

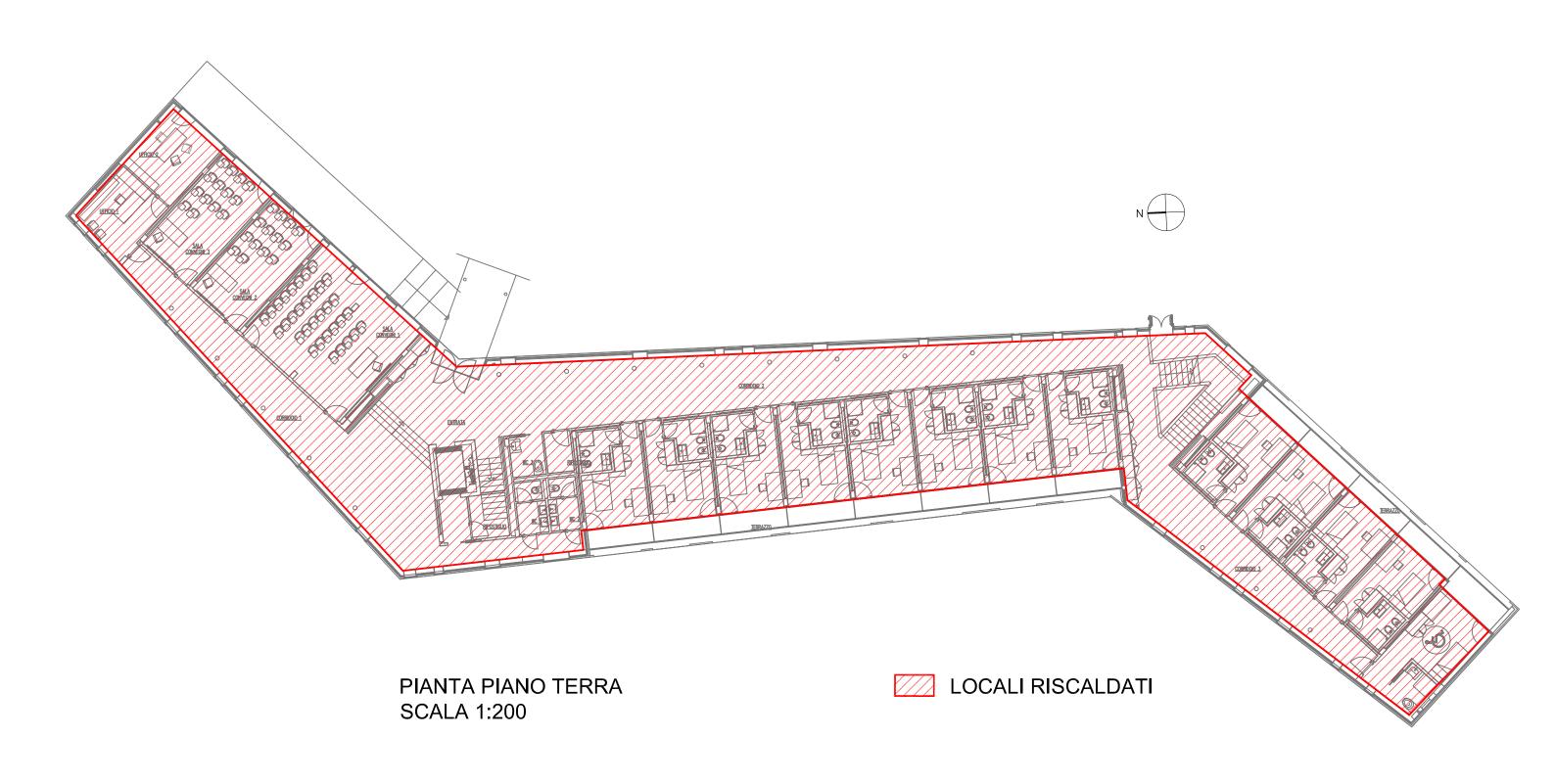
Risultati di calcolo

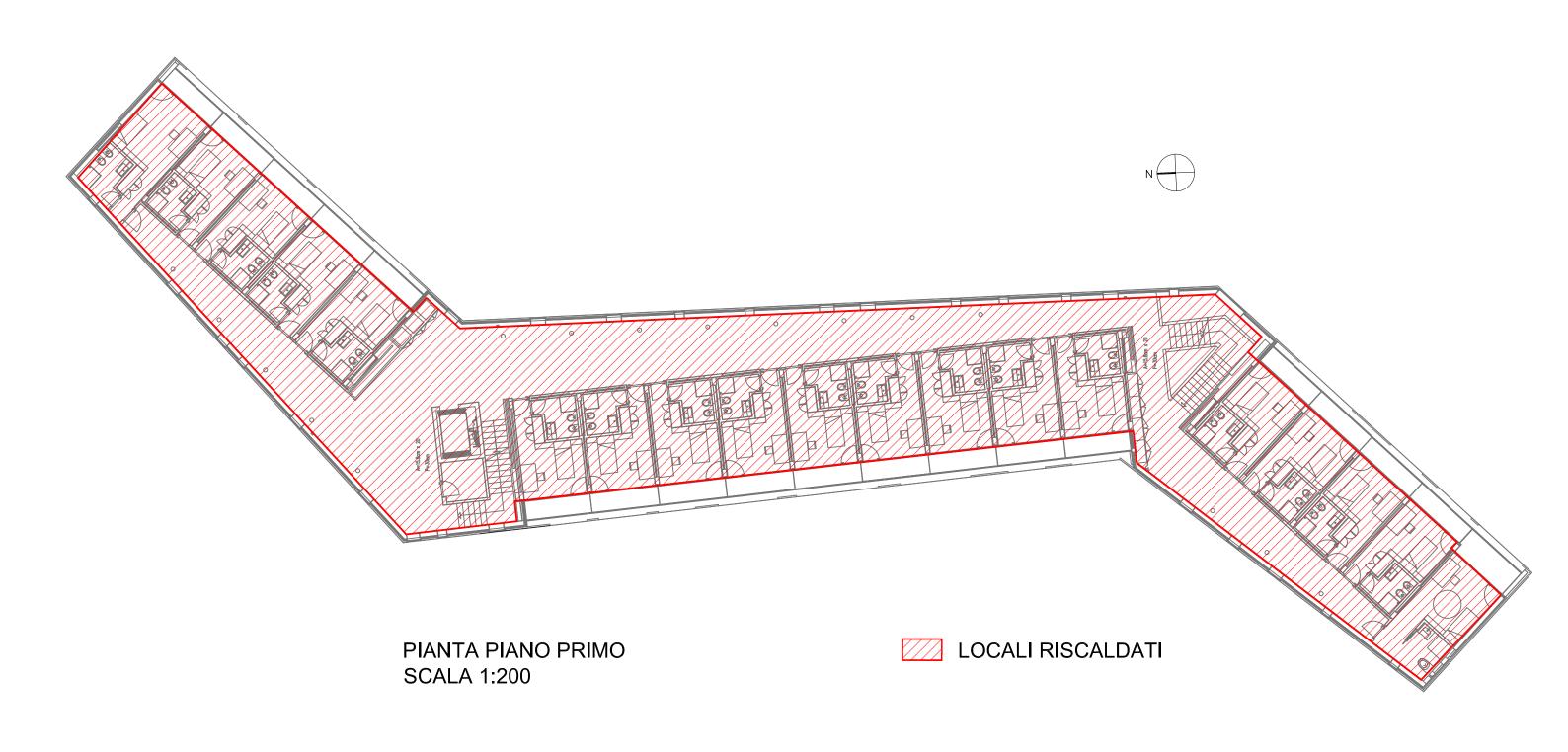
Simboli e unità di misura

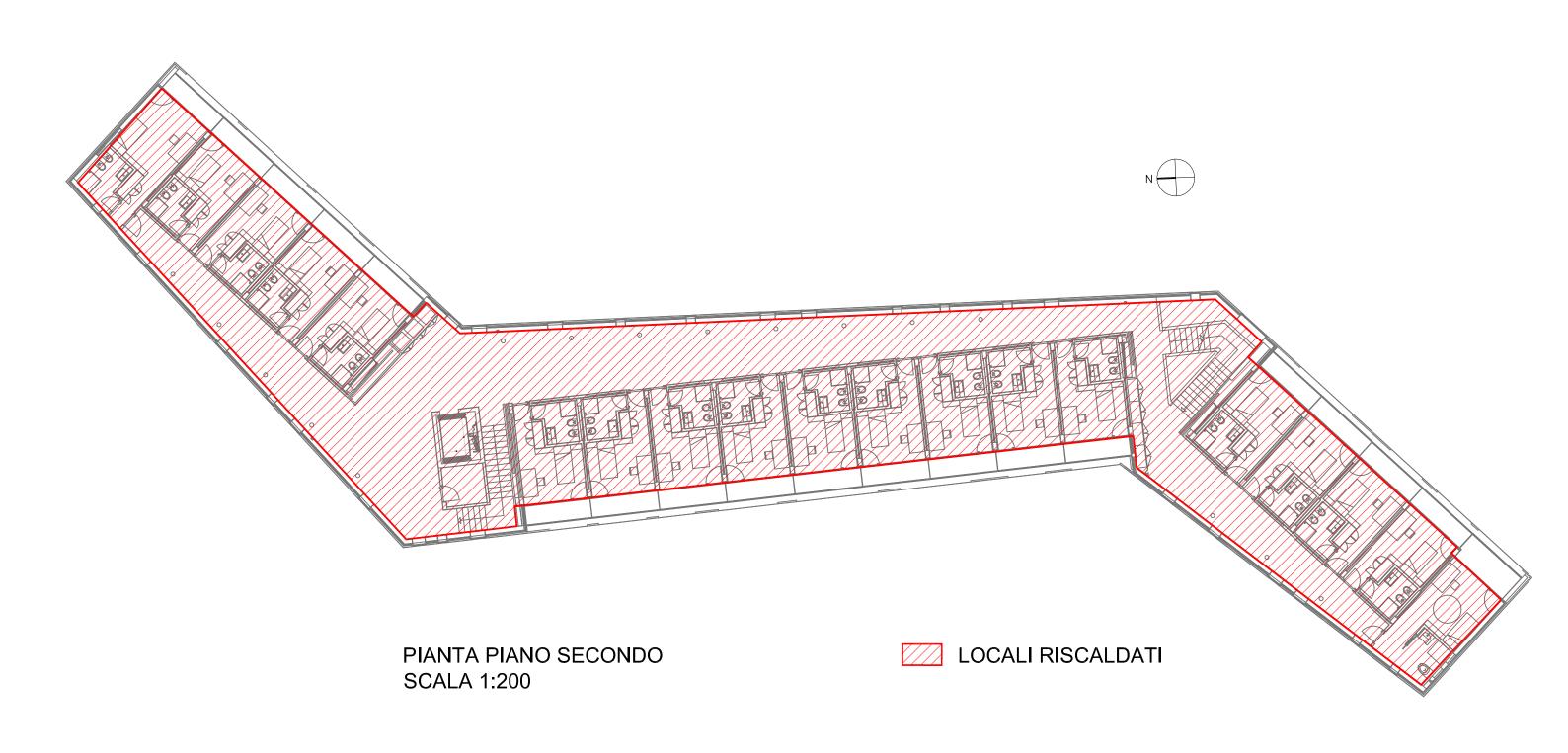
Simbolo	Quantità	Unità di misura
ср	capacità termica specifica	J/(kg·K)
Ag	area (vetro)	m²
Af	area (telaio)	m²
Ap	area (pannello)	m²
С	conduttanza unitaria	W/(m²⋅K)
d	spessore	m
fRsi	fattore di temperatura in corrispondenza alla superficie interna	-
fRsi,max	fattore di temperatura di progetto in corrispondenza alla superficie interna per il mese critico	-
9c	densità di flusso di vapore (condensazione)	Kg/m²
gev	densità di flusso di vapore (evaporazione)	Kg/m²
Uf	trasmittanza termica (telaio)	W/(m²·K)
Ug	trasmittanza termica (elemento vetrato)	W/(m²·K)
Ψg	trasmittanza termica (lineare del distanziatore)	W/(m²·K)
Up	trasmittanza termica (pannello)	W/(m²·K)
U_{W}	trasmittanza termica (totale del serramento)	W/(m²·K)
Lg	lunghezza perimetrale della superficie vetrata	m
Ma	massa di vapore per unità di superficie accumulata in corrispondenza di un'interfaccia	Kg/m²
рi	pressione parziale del vapore (aria interna)	Pa
Рe	pressione parziale del vapore (aria esterna)	Pa
R	resistenza termica di progetto (da superficie a superficie)	m²-K/W
Rsi	resistenza superficiale (interna)	m²-K/W
Rse	resistenza superficiale (esterna)	m²-K/W
sd	spessore equivalente di aria per la diffusione del vapore	m
λ	conduttività utile di calcolo	W/(m·K)
μ	fattore di resistenza igroscopica	-
ρ	massa volumica	Kg/m³
θ_i	temperatura (aria interna)	°C
θ_{e}	temperatura (aria esterna)	°C
Δt	sfasamento	h

10. DICHIARAZIONE DI RISPONDENZA

Il sottoscritto Dott. Ing. MARIO LUCARELLI Iscritto all'Ordine degli Ingegneri della Provincia di Perugia, numero di iscrizione A577 essendo a conoscenza delle sanzioni previste dalla normativa nazionale e regionale,

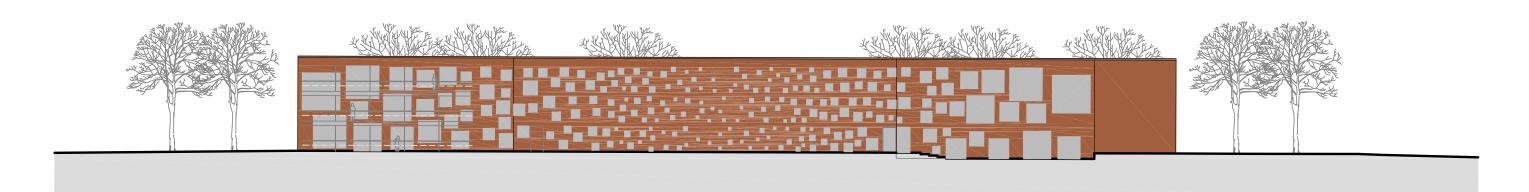

dichiara

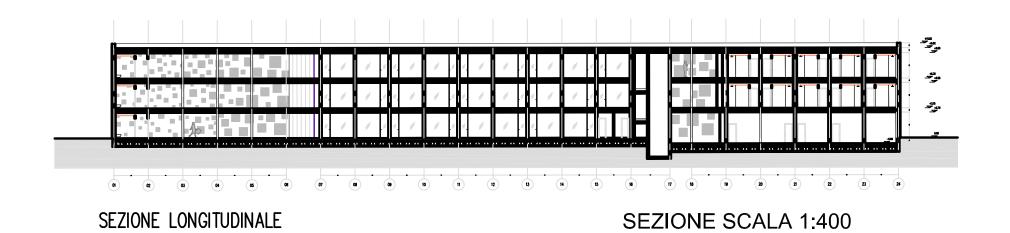

sotto la propria personale responsabilità che:

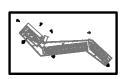

- a) il progetto relativo alle opere di cui sopra è rispondente alle prescrizioni contenute nel presente provvedimento;
- b) i dati e le informazioni contenuti nella relazione tecnica sono conformi a quanto contenuto o desumibile dagli elaborati progettuali.

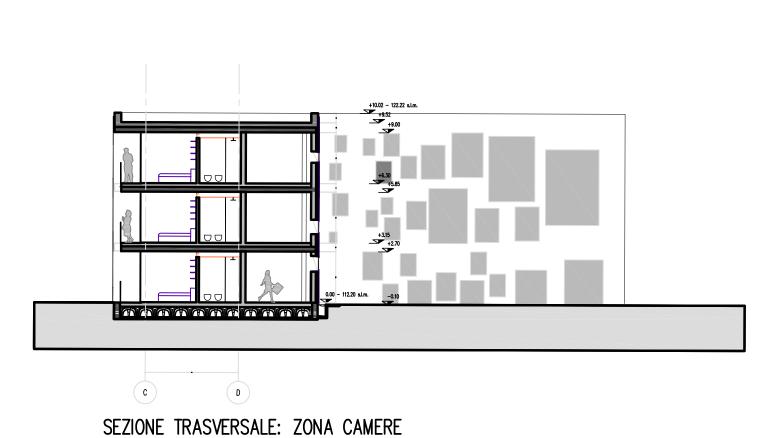
Data 24/03/2015

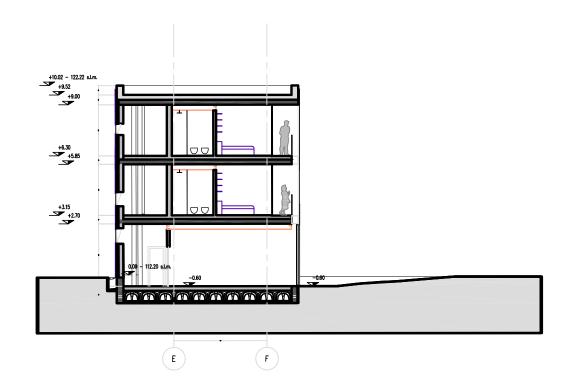
Firma




PROSPETTI SCALA 1:400




PROSPETTO 5 VISTA DEI FRONTI RETTIFICATA



PROSPETTO 4 - VISTA DEI FRONTI RETTIFICATA

SEZIONE SCALA 1:200

SEZIONE TRASVERSALE: SPAZIO AULE